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Abstract

We compare six different algorithms for localizing odor sources with mobile robots. Three al-
gorithms are bio-inspired and mimic the behavior of insects when exposed to airborne pheromones.
Two algorithms are based on probability and information theory, and infer the source location by
probabilistically merging concentration measurements at different positions in the environment.
The last algorithm is a multi-robot algorithm based on a crosswind line formation.

The algorithms are mainly compared with respect to their distance overhead — a metric di-
rectly related to the speed of an algorithm — and their success rate. The thesis also reports on
the influence of various environmental and algorithmic parameters, and compares the algorithms’
requirements regarding sensors, self-localization, maps, and other information.

Systematic experiments under laminar flow conditions were carried out with real robots in an
18 m long wind tunnel. The robots were thereby equipped with an ethanol sensor and a wind
direction sensor, and could — if the algorithm required it — access their current position. Overall,
more than 500 experimental runs with teams of up to 5 robots were carried out in this wind tunnel.

Similar experiments were also carried out in simulation. Over 5000 runs were carried out in
a realistically calibrated multi-robot simulator. Odor was thereby simulated as set of filaments
that are transported by advection, an approach that generates the intermittence and stochasticity of
real plumes. Additional, more than 10000 runs were carried out using body-less simulators under
various plume models. Simulation runs were mostly used to quantify the influence of various
parameters on the performance of the algorithms.

Finally, the thesis also provides theoretical insights into the bio-inspired algorithms, and a
general theoretical model for probabilistic odor source localization. For the latter, a number of po-
tential real-world scenarios are discussed on the example of a simplified train station environment.

None of the algorithms is strictly superior to all other algorithms. While the probabilistic
algorithms offer more flexibility and a slightly better performance, the bio-inspired algorithms are
much less CPU and memory intensive, and could therefore be deployed on extremely small and
limited robotic platforms.

Using multiple robots (with or without collaboration) for odor source localization was found to
improve the performance under certain conditions only. The crosswind formation algorithm with
3 robots yielded excellent results, but the multi-robot experiments with the bio-inspired algorithms
were hardly better than their single-robot counterparts. The thesis provides reasons for this, and
discusses alternatives.

Keywords: Odor Source Localization, Distributed Mobile Robotics, Wind Tunnel Experiments,
Chemical Sensors, Anemometry



Zusammenfassung

Wir vergleichen sechs Algorithmen zum Lokalisieren einer Geruchsquelle mit mobilen Robo-
tern. Drei dieser Algorithmen wurden dem Verhalten von Insekten im Geruch abgeschaut. Zwei
weitere Algorithmen versuchen die Position der Geruchsquelle durch probabilistisches Kombinie-
ren von Geruchskonzentrationsmessungen zu bestimmen. Beim sechsten Algorithmus arbeiten
mehrere Roboter zusammen und bewegen sich in Linienformation gemeinsam auf die Geruchs-
quelle zu.

Als Vergleichskriterien dienen vor allem der Umweg welcher ein Roboter gegenüber der Ide-
allinie macht sowie die Erfolgsquote beim Auffinden der Geruchsquelle. Da der Umweg in di-
rekter Beziehung zur Geschwindigkeit eines Algorithmus steht ist dies ein wichtiges Vergleichs-
kriterium. Die Algorithmen werden aber auch in Bezug auf notwendige Sensoren, Selbstloka-
lisierung und weitere Informationen verglichen. Ausserdem studieren wir den Einfluss von ver-
schiedenen Parametern auf die Leistungsfähigkeit der Algorithmen.

Die Algorithmen wurden anhand von systematischen Experimenten unter laminarer Strömung
in einem Windkanal getestet. Jeder Roboter war mit einem Alkoholsensor und einem Windrich-
tungssensor ausgerüstet und konnte — falls der Algorithmus dies benötigte — Informationen über
seine eigene Position im Raum abrufen. Insgesamt wurden mehr als 500 solcher Experimente mit
bis zu 5 Robotern gleichzeitig durchgeführt.

Ähnliche Experimente wurden auch in Simulation ausgetragen. Dabei haben wir mehr als
5000 Experimente in einem realistischen Robotersimulator durchgeführt, der dafür mit einer Ge-
ruchssimulation ausgestattet wurde. Weitere 10000 Experimente wurden in Simulationen vorgenom-
men in welchen der Roboter lediglich als Punkt dargestellt wird. Solche Simulationsexperimente
dienten vor allem dazu, den Einfluss von verschiedenen Parametern zu quantifizieren.

Diese Arbeit liefert ausserdem theoretische Resultate zur Analyse der Effizienz von Algorith-
men, sowie ein allgemeines Wahrscheinlichkeitsmodell zum Lokalisieren von Geruchsquellen.
Das Potential dieses Wahrscheinlichkeitsmodells wird am Beispiel eines vereinfachten Bahnhof-
szenarios demonstriert.

Einen absolut besten Algorithmus konnten wir dabei nicht ausmachen. Während die proba-
bilistischen Algorithmen eine grosse Flexibilität und eine recht gute Effizienz bieten benötigen die
von Insekten inspirierten Algorithmen sehr viel weniger Rechenleistung und Speicher. Letztere
könnten deshalb auf extrem kleinen Robotern zum Einsatz kommen.

Geruchslokalisation mit mehreren Robotern gleichzeitig (mit oder ohne Zusammenarbeit zwi-
schen den Robotern) zu betreiben verbessert die Effizienz nur bedingt. Exzellente Resultate
lieferte der auf Linienformation basierende Algorithmus — die den Insekten abgeschauten Al-
gorithmen hingegen konnten durch das Hinzufügen von Robotern nur unwesentlich verbessert
werden. Wir haben Gründe dafür gesucht und diskutieren Alternativen.

Stichwörter: Geruchslokalisation, Verteilte Mobile Robotersysteme, Elektrochemische Sen-
soren, Windmessung
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1 Introduction

Everyone of us has seen dogs sniffing around in a park to find a piece of meat, or simply to locate
an item that the holder has thrown for the dog to fetch. Dogs indeed have excellent noses. With
over 1000 different types of receptors, they are able to distinguish subtle differences in smell, and
as their nose is orders of magnitude more sensitive than a human nose, dogs excel in finding odor
sources.

That’s why dogs are used in a variety of safety and security tasks. Policemen use dogs to track
down drug dealers. Security staff on airports and public infrastructure use dogs to sniff for bombs
or explosive material. In criminal inspection, dogs are able to follow traces of odor on inspection
sites, and thereby help reconstructing what happened. And finally, dogs are also used in disaster
areas (avalanches, earthquakes, and so on) to find victims or dangerous substances.

Dogs are by far not the only animals with good noses. Swines, rats, and even bees are being
used to track down sources of odor [1].

This PhD thesis is not about animals, however. We instead seek to engineer a system to replace
animals in such tasks. More precisely, we seek to build a robot (or a robotic system) that is able
to find a source of odor, such as a victim buried under debris after an earthquake, or a bomb
placed on an airport. Such a robotic system — if it reaches similar capabilities as a dog — would
have a number of advantages over trained animals. Robots can be produced in large quantities
once a model has been designed. Robots do not get tired, but run as long as their battery lasts.
Robots do not have moods, but can be deployed at any time, even on very short notice. Robots
do not need lengthy training (lasting several months or years with dogs), but only an initial setup
and calibration procedure. Robots do not need as much care as dogs when they are not deployed
anywhere for some time. And finally, if a bomb blows off and destroys a robot, this is far less
displeasing as compared to a dog (and potentially its guide) being killed.

These are clear advantages which would cut the cost in existing applications, save lives in
high-risk applications, and potentially allow for even more applications.

But let us foreclose one fact right away: current state-of-the-art technology is far behind the
capabilities of a dog. The mobility and agility of a dog (or other animals) has not yet been achieved
with engineered mobile platforms. Dogs can jump over obstacles, walk on very uneven or highly
vegetated terrain, and sneak in narrow openings. They can combine visual, aural, olfactive and tac-
tile cues to plan complicated paths through difficult terrain, and recover from almost any situation.
No mobile robot to date can compete with similar properties.

In addition, even the best chemical sensing systems (electronic noses) available nowadays are
still far away from the capabilities of a dog’s nose. Some sensors reach the sensitivity of dog’s
nose [2] [3], but for a very limited range of substances. Other sensors [4] allow for discrimination
of various odors, but are far less sensitive.

In both these areas (robot locomotion and electro-chemical sensing), there is a lot of research
going on, and we might see interesting new technologies coming up in the next decades.

In addition to a mobile platform and an electronic nose, yet another component is needed to
allow for odor source localization: an algorithm (a set of rules) that describes how the robot should
move through the environment in order to find the odor source. When compared to the dog, this
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10 1.1 Odor Source Localization

would be its brain, or the “wiring” therein, and it is needless to say that algorithms are a crucial
factor for finding odor sources. This PhD thesis is about such odor source localization algorithms.
We compare existing algorithms — mainly in terms of speed and success rate — and present new
ones that are faster, more energy-efficient, or easier to integrate into mobile robotic systems.

Besides single-robot algorithms, we thereby also explore algorithms for multi-robot systems,
that is, a fleet of mobile robots collaborating to find an odor source. Collaboration, or teamwork,
is an interesting aspect in our life, and in the life of many animals. Working together allows us
to finish a given task in shorter time (e. g., carrying a large amount of small pieces of wood to
another place), or accomplish it at all (e. g., carrying one heavy piece of wood to another place).
In a similar fashion, we can make robots collaborate to decrease the time to find the source. Some
algorithms even require multiple robots to work together.

Speed is indeed an important criterion in many of the applications mentioned above. In some
cases, the time to find a source of odor is even more important than finding the source at all.
Imagine, for instance, that you are looking for a victim buried in an avalanche. Finding the victim
within 10 minutes may save his or her life — finding it after 6 hours or not finding it at all does
not make a big difference. When looking for bombs (e. g., after bomb alerts), speed is even more
important: once the bomb blows off, its original location is not of interest any more, or has to be
determined with other means. Hence, using multiple robots can be advantageous even if the total
energy spent and the total system cost are higher. Put in different words, using multiple robots
allows us to “buy in” time for energy and material.

Just as with humans, working in teams has yet other advantages. If somebody falls sick (or
a robot breaks down), others can jump in and take over their work. Hence, the system is more
robust with respect to failure or malfunction of an individual. Furthermore, just as different people
have different opinions or ways of achieving a task, different robots may use different algorithms
or different sensors. This diversity makes the system more robust with respect to the environment,
or changes therein.

In this thesis, we do not focus on any particular application, but compare different algorithms
and comment on their performance and peculiarities. Such information is valuable for robotic
system designers if their system includes odor source localization tasks. We do that by carrying
out carrying out experiments with real robots in a wind tunnel, by running simulation experiments,
and through theoretical models.

Let us now introduce odor source localization from a scientific point of view.

1.1 Odor Source Localization

Odor source localization1 with mobile robots is a search problem, with the goal of finding a source
that releases some chemical substance which can be measured by an appropriate sensor. Sub-
stances can range from molecules (e. g., O3), to droplets (e. g., water vapor) or particles (e. g.,
smoke).

In the framework of mobile robotics, search is the problem of finding of an object (or type of
object) with some given properties, usually by means of taking measurements in the environment.
In our case, these environmental cues are mainly the concentration of odor at various places, and
information about the wind flow.

1Some scientist refer to the same problem as gas source localization [5] [6], to stress the fact that any gas could be
used, not only gases perceivable by humans or animals. We prefer odor, as it stands for chemical compound that can
be perceived by the sense of smell, which applies very well to artificial systems, too: our robot can only track down
chemical compounds for which it has a chemical sensing system (i. e., an artificial sense of smell). Odor is thereby
understood from the perspective of the robot, not from the perspective of a human or animal.
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1. Introduction 11

Figure 1.1: Illustration of the intermittent plume structure. Left: Picture of smoke and water
vapor in the air, showing the packet-like structure created by turbulence. Right: Exemplary odor
concentration in time (about 20 s) or space (about 50 cm).

Finding the source means determining its location and does not necessarily include moving
towards it, even if the latter is interesting in several applications and a side effect of many algo-
rithms. Since chemical sensing can only be done locally, measuring the concentration in proximity
of the source most often gives the most precise indications of source position. Moving towards the
source might not be possible in all cases, however, as sources might stand in places that are not
reachable by the robot.

In some situations, the source is not even a clearly identifiable object in the environment.
While a piece of luggage containing explosive material represents a relatively well-defined source
object, the concept of “source” becomes fuzzy when odor is coming in through a little fissure or
hole in a wall, for instance. From the perspective of somebody inside the room, one could say that
this fissure is the source — indeed, if you pad the fissure, no odor will come in any more and you
hence got rid of the “source”. The real source, however, is probably in another room behind the
fissure.

Furthermore, a source is not a point in the environment, but can have a large physical extent. A
freshly painted building is a source as a whole, for example, and the world’s oceans are the source
of much of the water vapor in the air. A source therefore has a shape, and an intensity which is not
necessarily uniform over the surface area.

For the remainder of this thesis, we however assume that the source is a well-defined object
within the search area, and relatively small as compared to this area. Unless mentioned otherwise,
we also assume that the source is reachable.

1.2 Challenge

The main challenge of odor source localization is the intermittent structure of plume in the air
[7] [8]. Due to the turbulent structure (over large scales) of the air flow, plume has an irregular
packet-like structure, whereby high and low concentrations are close in both time and space, as
illustrated in Figure 1.1.

Often, the statistically highest odor concentrations are measured around the source. Over short
time scales, however, this may not be true at all. For this reason, classical search algorithms based
on the concentration gradient generally do not work unless the concentration is averaged over long
times scales, which is impractical for many applications. Search algorithms from other fields (such
as the localization of a sound or light source) can hardly be applied to odor sources.
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12 1.3 Problem Structure

Figure 1.2: Problem structure as suggested by Hayes et al. [9] [10]. (a) Layman’s understanding.
(b) Actual structure for approaches with a clear separation between plume finding and plume
traversal. (c) Actual structure for solutions with algorithms that do not distinguish between plume
finding and traversal.

1.3 Problem Structure

In simple terms, an odor source localization task consists of three parts [9] [10]:

1. Plume finding refers to the phase in which the robot is not in the plume, and has no (or not
much) information about the location of the source. The main goal here is to find an initial
cue, i. e., a first odor packet.

2. Plume traversal is the phase in which the robot is in the plume or close to it. In this phase,
the robot tries to stay in the plume while approaching the source.

3. Source declaration is the decision process finding out whether the source has been reached,
at which location it is, or which object exactly the source is.

While this model is very didactical and easy to understand by non-experts, it is a bit misleading
as it suggests that these actions are running one after the other as shown in Figure 1.2 (a). But in
reality, the source declaration process is actually running all the time and not just at the end, even
if is just waiting for a potential source to show up (e. g., by comparing the measured concentration
values against a threshold) for long periods of time. Furthermore, a robot may switch from plume
traversal back to plume finding if it loses the plume and is unable to locally reacquire it. Hence,
the diagram depicted in Figure 1.2 (b) is a more precise representation of the problem structure.

Yet, some plume traversal algorithms can be used for plume finding as well. An example
for this is the surge-spiral algorithm, presented later in Chapter 3. This algorithm is primarily
designed for plume traversal, but can — at least in some environments — be used for plume finding
as well. Other algorithms, such as the probabilistic algorithms presented later in Chapter 4, do not
even make a strict difference between plume finding and plume traversal. The same decision
process is used throughout the whole tasks, no matter whether the robot has recently seen the
plume or not. For solutions using such algorithms, Figure 1.2 (c) is an accurate sketch of the
structure.

This thesis clearly focusses on the plume traversal phase, or on the combined plume finding
and traversal phase. Source declaration is not covered at all, and actually a very different problem.
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Recent attempts to tackle this problem have been made by Li et al. [11] [12] and Kowadlo et al.
[13] and Lilienthal et al. [14], but this is clearly a domain requiring much more work.

For pure plume finding, most area coverage strategies — a field that is well understood [15]
[16] [17] — can directly be applied. A more sophisticated coverage algorithm based on a plume
propagation model is briefly discussed in Section 4.3.

1.4 Environments

Most work on odor source localization so far was concerned with airborne odor plumes, and so is
this thesis. There has been work in other environments as well, however.

Tracking plumes in water [18] [19] [20] is similar to tracking plumes in the air. Despite the
different physical properties of water as compared to air, the main transport phenomena are the
same. As in air, plume in water is mainly dispersed by turbulence, and molecular diffusion only
plays a marginal role. Hence, plumes in water show similar intermittency as plumes in the air.
Chemical sensors as well as robotic platforms required for such applications are obviously very
different.

Russell [21] [22] showed that tracking plumes is also possible in sand, where odor is mainly
transported by diffusion and therefore creates a smooth concentration gradient up to the source.
Hence, simple gradient-based algorithms can be used.

A somewhat similar problem is chemical trail following on a floor [23]. Some trail following
algorithms are very similar to airborne plume traversal algorithms, and chemical trails on the floor
are conceptually similar to static plumes (i. e., without meandering) in the air. In addition, similar
chemical sensors can be used for trail following scenarios.

1.5 Information Sources

The primary information source for any odor source localization algorithm is a chemical sensor
reporting the concentration of the substance that the source releases. Some algorithms require
a robot to carry one such sensor, while some require at least two sensors. In one study [24],
researchers even deployed 4 chemical sensors on the robot.

For airborne plume tracking, there are a number of other information sources that can support
the odor source localization task:

. In environments with a main wind flow, information about this wind flow is very valuable.
In the simplest case, this can be achieved by adding a wind direction sensor on top of the
robot, allowing the robot to infer the direction (locally) from which the odor is coming. In
more sophisticated setups, accurate information about the wind flow may be collected by
external sensors, and/or simulated using CFD software [25].

. Visual information may allow a robot to come up with a list of potential sources [26] [13], or
mark some areas as more probable than others (see Section 4.3.5) based on visual features.
For the same purpose, laser rangefinders, depth cameras, or ultrasound range sensors could
be of use.

. A map of the environment may help the robot navigate and find an optimal strategy for
covering the area. In addition, maps can be used to infer information about the wind flow,
and therefore the odor propagation [27] [28].
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This thesis is entirely about airborne plume tracking, and focuses mainly on environments with
a main wind flow. Our robots are therefore equipped with a wind direction sensor in addition to
an odor sensor. The use of additional information is explored in Section 4.3.

1.6 Fundamental Approaches and Existing Algorithms

A number of specific odor source localization algorithms have been proposed in the last two
decades. In 2008, Kowadlo et al. [29] published an excellent survey of the work in that area
so far. They classified more than 25 algorithms with respect to several criteria in a Venn diagram.
With the exception of infotaxis [30] which was published only shortly before the survey, the survey
still retains its validity.

We suggest a slightly different classification of existing odor source localization algorithms
here. An algorithm thereby belongs to one of the 9 approaches sketched in Figure 1.3. 7 of
these approaches are further grouped into 4 main categories, which we present and discuss in the
following sections.

Note that almost all works so far considered a 2D environment, and odor source localization
experiments in 3D environments are still rare [31] [32] [33].

1.6.1 Gradient Ascent Methods

Despite the intermittent structure of the plume, many researchers have explored gradient ascent
methods. Plume concentration is thereby seen as a noisy function over the explorable area or vol-
ume, and it is implicitly assumed that the odor source is located at the maximum of this function.
The problem is then similar to optimization or function maximization, and robots are typically
equipped with odor sensors only.

Techniques in this category mainly depend on the number of odor sensors:

. With a single odor sensor, biased random walk2 [34] [35] [36] [37] or similar algorithms
[22] [5] have been used. Such algorithms are extremely simple to implement and have very
low requirements regarding sensors, CPU and memory. Their performance, however, is not
particularly good.

. With two sensors on a single robot, the sensor difference can be used for robot navigation.
Grasso et al. [38] and later Lilienthal et al. [39] [40] [41] carried out experiments with
Braitenberg vehicles, in which both motor speeds of the differential-drive robot are functions
of the instantaneous odor concentration measured by the two sensor. A similar approach is
to modulate the curvature (rotational speed) of the robot as a function of the concentration
difference measured by the two sensors [32] [31] [42]. Mathematically, both approaches
are similar: the instantaneous wheel speeds are related to the instantaneous concentration
sensor input through a (usually simple) function.

. Ishida et al. [24] applied the same concept on a robot with 4 sensors. However, only two
sensors were used at a time.

. Marques et al. [37] as well as Jatmiko et al. [43] [44] [45] proposed odor source localization
algorithms based on particle swarm optimization (PSO), or variants of it. Between 4 and
22 robots equipped with one sensor each were thereby collaboratively tracking down up
to 5 sources in environments with and without obstacles. Experiments were carried out

2Some researchers refer to them as bacteria-inspired approaches.
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Figure 1.3: Odor source localization approaches. Almost all algorithms discussed and tested so
far can be attributed to one of these 9 approaches.
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with real robots and in simulation. PSO, in its origin, is a function optimization heuristic
based on particles moving through the parameter space. Particles have a velocity and a
position and move smoothly through the parameter space. This makes this heuristic suitable
for robotic experiments, where each particle is represented by a physical robot. For many
other function optimization heuristics (e. g., genetic algorithms), robots would have to jump
between measurements.

1.6.2 Bio-inspired Algorithms

Another class are algorithms that try to imitate behaviors observed in nature. The ability to localize
odor sources is crucial to many living species and played an important role throughout the evo-
lution process. Hence, odor source localization strategies used by animals are supposedly highly
optimized.

Most bio-inspired algorithms are based on the well-studied behavior of moths [46] [47] [48]
[49] [50]. Trajectories of (silkworm) moths mainly contain three behaviors [51]:

. Upwind surge: When exposed to pheromones, the insect goes upwind.

. Casting: After having lost the plume, the insect swings from side-to-side (with increasing
amplitude) for a few seconds in the hope to reacquire the plume.

. Spiraling: If the insect still hasn’t found the plume, it switches to a circular motion pattern.

Based on one or more of these three rules (or variants thereof), researchers have come up with
a variety of discrete-state algorithms. These algorithms are in general based on a wind direction
sensor and a binary odor concentration sensor, i. e., the robot is either in the plume or out of
the plume, but ignores different concentration levels. Since most odor sensors provide a smooth
concentration value rather than a binary signal, their output is typically thresholded and kept high
(i. e., in the plume) as long as there has been at least one above-threshold value in the past few
measurements. The latter accounts for the peaky plume structure.

Some of the proposed algorithms are entirely based on casting [52] [50] [24]. Robots thereby
move upwind under a certain angle until they lose the plume, and then turn back towards the plume
to sweep through it in opposite direction. A number of variants of this behavior have been tested,
including the use of adaptive upwind angles [53], casting around the plume boundary only [36],
and version adapted for underwater odor source localization [18].

Some authors combine casting with upwind surge [54] [55] to speed up the algorithm. With
these algorithms, the robots move upwind as long as they are in the plume, and only apply casting
when they lose the plume.

Other algorithms are primarily based on the spiraling behavior. Spiraling itself does not re-
quire knowing the wind direction and can therefore be used in environments without a main wind
flow [56] [57]. With a wind direction sensor, spiraling can be combined with upwind surge, an
algorithm that has been tested by Hayes et al. [9] [10] on a multi-robot system with and without
collaboration.

We discuss three bio-inspired algorithms based on the same core principles in greater details
in Chapter 3.

1.6.3 Algorithms Based on Probabilistic Inference

Recently, an odor source localization algorithm called infotaxis and based on probabilistic infer-
ence has been proposed [30] [58]. The location of the source is thereby modeled as a probability
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distribution which is derived from concentration measurements (observations) made in the envi-
ronment, and the robot tries to reduce the entropy of this distribution by moving to locations for
which a high information gain is expected. Such locations are at the plume boundary, or — more
precisely — where the robot suspects the plume boundary to be.

With such an approach, the peaky structure of the plume is transformed into a much smoother
function (in [30]: the expected entropy decrease). The navigation rule is then simply that of
gradient following on this function. The function however has its optimum at locations that yield
high information gains, and not where the source is located. Hence, the robot does not necessarily
move towards the source, even though this holds true for most practical cases. In any case, the
robot calculates a belief (probability distribution) of the location of the source.

To date, the infotaxis algorithm was tested in mathematical simulations only, and there are no
reports on experiments with real robots.

Probabilistic inference for localizing odor sources have also been proposed for static sensor
networks [59] [60] [61] [62].

We discuss a general probabilistic model and two derived algorithms in Chapter 4.

1.6.4 Map-Based Techniques

Several authors analyzed odor source localization algorithms based on odor concentration maps
[63] [6] [64] [65]. Their results show that the source is not always at the place where the highest
average odor concentrations are measured, even if such places are likely to host the source in
many scenarios. A good indicator for the source location, however, is the variance of the measured
samples at a given location. Close to the source, this variance was found to be significantly higher
than further away — a rule that is very simple to apply to statistical concentration maps.

1.6.5 Other Approaches

Two other approaches for localizing odor sources are worth mentioning here. Both algorithms
allow to localize odor sources, but are not plume tracking algorithms per se.

Kowadlo et al. suggested a combination of vision, olfaction and airflow maps for odor source
localization [13]. Using the airflow map, their algorithm compiles a list of locations which are par-
ticularly useful for taking odor concentration measurements. The robot then visits these locations
to record the odor concentration, and uses the resulting information to reason about the potential
location of the source. In a second step, the robot uses vision to prune the list of potential sources,
and finally olfaction again to determine whether an object is a source or not. The algorithm is
similar to the probabilistic algorithms, although the utility function is not based on probability
theory. In addition, an interesting concept found here is the list of potential odor sources: the
(continuous) solution space is reduced to a (discrete) list of potential odor source locations, which
can subsequently be verified with different techniques.

Another quite original concept was suggested by Lilienthal et al. [39] [40]: in their exper-
iments, robots were programmed to avoid odor and to randomly wander around in areas of low
concentration. From the robot trajectories recorded during the experiment, it was straightforward
to determine regions with high concentrations, as the robot simply left them out. Such information
helps inferring the location of the source in a similar fashion as the map-based techniques do, but
are much easier to implement.
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1.7 Multi-Robot Collaboration Schemes

Most of the algorithms discussed above are generally intended for single-robot systems, and the
literature on multi-robot odor source localization is indeed sparse. To our knowledge, there exist
only three approaches to date.

Hayes et al. applied a bio-inspired algorithm based on spiraling and upwind surge to multiple
robots [10] [9], and studied the effect of a primitive broadcasting communication scheme. In
particular, they studied a communication scheme called KILL in which all robots stop as soon as
one perceives an above-threshold odor concentration, and a scheme called ATTRACT whereby
robots that do not perceive any odor join others that have found plume information. Experiments
were carried out with real robots and in an embodied simulation, and the performance metric
was linear combination of time and group energy, the latter being proportional to the sum of the
distances the robots traveled. The KILL strategy was found to save significant power, whereas the
ATTRACT strategy did not reveal any advantage in their setup.

Second, all algorithms based on PSO [37] [43] [44] [45] are intended for use in multi-robot
systems. PSO requires robots to communicate at least locally, and robots must be aware of each
other’s position. In the standard PSO algorithm, collaboration is however limited. The only vari-
able they share is the (locally or globally) highest concentration, and the position where it was
measured. As a result, robots will have a tendency to move towards the same local optimum if
communication is global, and may bump into each other. Jatmiko et al. therefore introduced an
extension called CPSO [44] in which robots share their positions and use a repulsive force to avoid
collisions and make sure robots remain spread over some area. Robots however do not directly
take concentration measurements of other robots into account.

Finally, the infotaxis algorithm has been extended to multiple robots [58]. Robots thereby
share all their observations (concentrations and positions) to collaboratively infer the location of
the source. All information from all robots is integrated into a single model, which is the maximum
amount of information robots can share. The authors reported that in some scenarios, super-linear
performance increase can be achieved by using multiple robots.

1.8 Adjacent Research Fields

Related problems to odor source localization with airborne plumes include plume modeling and
simulation [7] [37], gas distribution mapping [65] or pollution monitoring [66], olfactory-guided
coverage [67], odor classification [68] [69], fluid dynamics of sniffing [1], and search in general
[70] [71].

1.9 Research Questions

The primary goal of our research is two-fold: First and foremost, we compare and contrast dif-
ferent algorithms for odor source localization, in order to assess what algorithms are suitable for
a given scenario or application. Particular attention is thereby given to multi-robot algorithms.
Second, we demonstrate their applicability on real robots, and formulate potential real-world lim-
itations or caveats.

This thesis by no means intends to test and compare all existing odor source localization tech-
niques, but it does help a designer of a future odor source localization system choose the right
algorithm (or the right class of algorithms), and provide him with information about the perfor-
mance he might expect, the hardware he will need, or the limitations he will have to cope with.
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1.10 Methodology

To address these research questions, we are working at four different levels of abstraction between
theory and application:

. Pure theory, mathematical models: For some algorithms, performance bounds can be
derived within a mathematical model. (Example: expected performance of the casting algo-
rithm, Section 3.3.3.)

. Abstract simulation: To measure the pure and idealistic performance of an algorithm
(without any real-world effects), simulations are carried out at a high abstraction level.
The robots are thereby dimensionless points, and interaction with the environment is im-
plemented through simple models. Usually, such simulations are easy to set up and run
very fast. Throughout this thesis, we carried out more than 10000 such runs. (Example:
simulations with the probabilistic odor source localization algorithms, Section 4.3.)

. Realistic robotic simulation: A good estimate of the real-robot performance of an algo-
rithm can be obtained in simulation with a realistic robotic simulator, such as Webots [72].
Robots are thereby simulated with all their sensors and actuators that interact with the sim-
ulated environment. As the simulation setup can easily be reconfigured, this abstraction
level is suitable for analyzing the influence of parameters of the algorithm, the sensors and
actuators, or the environment. Even physically impossible configurations (e. g., noise-free
sensors) can be tested, which allows to study the impact of real-world effects on the per-
formance. Throughout the thesis, we carried out more than 5000 such runs. (Example:
simulation experiments with the bio-inspired algorithms, Section 3.2.2.)

. Systematic real-robot experiments: A realistic performance value is obtained by running
experiments with real robots in a controlled environment, namely the available wind tunnel.
The wind tunnel still allows us to control (or at least accurately characterize) a number of
parameters, but experiments are done with real sensors and activators in a real plume. Such
experiments provide the experimenter with very valuable hands-on experience and intuition
for a specific algorithm since they point out real-world issues and limitations. Real-robot
experiments are more tedious to set up and time-consuming to run. Nevertheless, we carried
out more than 500 experimental runs total, and their outcome constitutes an important part
for the analysis and comparison of the algorithms. (Example: real-robot experiments with
the crosswind formation algorithm, Chapter 5.)

We did not carry out any real-robot experiments in realistic environments. This would have
required setting up a completely new experimental site, which is a substantial investment in terms
of time and money. Furthermore, we wanted to maximally exploit the wind tunnel facility3, as
this is equipment that other research laboratories do not have available, and therefore best comple-
ments the work done in other laboratories. Nevertheless, we are aware that field experiments are
important as a final field validation of odor source localization algorithms.

The majority of the experiments (at all abstraction levels) we carried out were in quasi-laminar
wind flow at very low Reynolds numbers. We obviously cannot account for all potential environ-
ments and situations that occur in nature and carry out systematic experiments for all of them.
Laminar flow is not only a simple, but a basic scenario with few free parameters. Effects such as
meandering or turbulence, which could influence some algorithms more than others, are ignored.

3Note that we have by far not exploited all possibilities a wind tunnel can offer. Hence, it would have been a lost
opportunity to not fully exploit it.
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Figure 1.4: Schematic depiction of the distance overhead, dt
du

. Without loss of generality, the
source is assumed to be at (0,0). The upwind distance, du, denotes the distance by which the robot
is closer to the source after the run, as compared to before the run. The traveled distance, dt, is
simply the length of the trajectory covered by the robot.

This is not to say that such effects should always be ignored when comparing odor source local-
ization algorithms, but plain laminar flow is certainly the simplest environment algorithms can be
tested in, before adding more complexity.

1.11 Metrics

Our main performance metrics when comparing plume tracking algorithms are the distance over-
head, do, and the success rate, sr. The former is calculated as

do =
dt

du
(1.1)

where dt denotes the effectively traveled distance by the robot and du the upwind distance. The
upwind distance is the Euclidian distance between the robot and the source at the beginning of
the experimental run (minus the distance at the end of the run, in case the robot did not reach the
source) and therefore stands for the shortest path a robot could take if it knew the location of the
source. For a source at (0,0), this can be expressed as

du =
√

x2
start + y2

start−
√

x2
end + y2

end (1.2)

and is depicted in Figure 1.4. How to accurately measure dt and du depends on the experimental
setup, but is usually not a problem.

The advantage of the distance overhead metric is two-fold:

. do is independent from the downwind distance at which the robot was released as long as
the plume structure (width, intermittency, concentrations) remains the same over the whole
length4. Hence, the results of different starting positions can be compared.

. do is the same for a robotic vehicle with differential-drive kinematic constraints, as well
as a completely holonomic vehicle. (In contrast, the time to reach the source is not: it
penalizes algorithms with which robots have to quickly change the movement direction, as
a differential-drive robot cannot do that in infinitesimally short time.)

The success rate, sr, is the fraction of runs in which the robot successfully found the source.
Note that — in contrast to the distance overhead — this value can only be compared if the upwind

4In the wind tunnel and the corresponding simulation setup, the plume profile does not change significantly over
most of the length.
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distance is the same. All experiments presented in this thesis were carried out with an upwind
distance of du ≈ 14 m.

Combining the distance overhead and the success rate to an overall performance would not
make sense in general terms, as the weighting between the two heavily depends on the application.
Imagine a system to find leaks in a gas pipes of industrial plants, for instance. If there are leaks in
the pipe, we absolutely want to find them. Obviously, the faster this can be done, the better, but
the primary goal is to succeed. On the other hand, a robot looking for explosive substances after
a bomb alarm has been raised should find the bombs as fast as possible. Failing to find them is
equivalent to being too slow, as the bombs will blow off in both cases.

1.12 Contributions

The main contributions of this thesis are:

1. A comparison of 6 odor source localization algorithms under laminar flow conditions in a
systematic environment. The algorithms are compared with respect to their performance,
required information, and suitability for different types of environments.

2. A probabilistic model for odor source localization, and several extensions to take constraints
of the robot and the environment into account. A map-centric implementation demonstrates
the potential of that model.

3. A multi-robot odor source localization algorithm based on a crosswind line formation, and
its evaluation with up to 5 robots.

4. An in-depth evaluation of three single-robot plume tracking algorithms inspired by the be-
havior of moths.

5. A lightweight robot-centric implementation of the probabilistic model, and the observation
that the resulting trajectories are similar to insect trajectories.

6. The setup of an experimental environment in a wind tunnel to carry out systematic real-
robot odor source localization experiments, as well as the implementation of a Webots [72]
physics plugin to simulate wind and odor.

Alongside this thesis, we also contributed to the following two open source projects:

. We implemented the core of SwisTrack 4 [73] [74], an open source visual tracking software
for multi-agent systems.

. We implemented the Khepera III Toolbox [75], an open source software toolbox for the
Khepera III robot.

1.13 Structure of This Thesis

The remainder of this PhD thesis is structured as follows:
Chapter 2 provides an in-depth description of the hardware and software tools developed and

set up to test the algorithms with real robots and in simulation. This includes the tools used in
the wind tunnel, the robots with their extension boards, as well as the odor simulation plugin
developed for Webots [72], the simulation software we use. This chapter does not discuss any
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odor source localization algorithms, but provides all the details of the experimental setup used for
the experiments discussed in later chapters.

We then present three bio-inspired algorithms in Chapter 3. After introducing the algorithms,
the thesis reports on real-robot and simulation experiments, and compares them to results obtained
within a theoretical framework. We then discuss real-robot experiments carried out with obstacles
(i. e., in turbulent flow). The second part of this chapter is devoted to multi-robot experiments with
bio-inspired algorithms, and study the performance of a multi-robot system without collaboration.
These results also allow us to make assertions about multi-robot systems employing collaboration.

Chapter 4 starts by introducing a probabilistic model for odor source localization, and subse-
quently presents two vastly different implementations of this model. The first implementation is
a map-centric implementation for multi-robot systems (and even static sensors) which is tested in
simulation only. This implementation is also applied to a simplified train station scenario which
serves us to demonstrate the possibilities of the model. The second implementation is a lightweight
robot-centric implementation, for which we present results obtained through abstract simulations,
embodied simulations, and real-robot experiments. This part is concluded with a note on the
similarity to insect trajectories.

Chapter 5 then introduces a lightweight odor source localization algorithm inherently designed
for multi-robot systems. The algorithm is based on a crosswind formation and achieves excellent
performance in our setup.

Note that chapters 3, 4 and 5 can be read independently from each other. The algorithms are
contrasted in Chapter 6, which also states high-level advantages and limitations of the algorithms.
Chapter 7 concludes the thesis.
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2 Development and Setup

An important aspect of this PhD thesis is the evaluation of algorithms in simulation and with real
robots. Inspired by previous experiments done in other research laboratories, we developed the
necessary hardware and software tools and set up environments for both real-robot and simulation
experiments.

2.1 Real-Robot Setup

Our main experimental site is an old wind tunnel at EPFL. The wind tunnel was built in the
1970ties and since then used for various wind engineering experiments and measurements. Due
to the retirement of the professor in charge in 2006, we inherited this wind tunnel and can use it
for robotic experiments. Many design choices in our experimental setup are directly or indirectly
related to this wind tunnel facility, and sometimes trade-offs between optimality and feasibility.

Figure 2.1 shows a sketch of the experimental setup used in the wind tunnel. The wind tunnel
is about 18 m long and 4 m wide. Since some space on both ends can only be accessed with
difficulty, the usable length is about 15 m. An ethanol source is deployed close to the wind inlet,
and the robots are starting about 14 m downwind from that point. The robots are equipped with an
odor sensor (artificial nose) and a wind direction sensor.

In the remainder of this chapter, we describe the individual parts of this experimental setup,
and motivate our design choices.

2.1.1 Odor

A crucial choice at the root of the whole development was the type of chemical to use for the
real-robot experiments. Ideally, the substance would be visible in the air, not leave any traces on
the floor, and — most importantly — be harmless to both humans and robots (electronics). The
substance should furthermore be cheap, readily available, easily releasable into the air, and have
neutral buoyancy therein. The latter excludes all substances that do not have the same temperature
as the ambient air, as hot substances tend to rise and cold substances tend to fall. Furthermore,
good chemical sensors for that substance must be available.

We considered a number of substances. Interestingly, the most difficult property to fulfill is the
visibility in the air. For a particle to be visible in the air, it needs to have dimensions in the order
of one wavelength of visible light, i. e., ≈ 600 nm. Particles (or droplets) of that size tend to leave
traces on floor or electronics. Hence, smoke and water vapor are not suitable for our experiments.
Molecules are typically much smaller and therefore not visible, but there is a vast choice of readily
available and easily releasable substances on the market.

We finally decided to use ethanol (C2H5OH), which is harmless to humans and robots in the
small quantities used. Due to the low boiling point, it hardly leaves traces on the floor or on the
robot. In addition, small ethanol sensors are readily available from several companies. The only
disadvantage of ethanol is that it is not visible in the air.
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Figure 2.1: Sketch of the experimental setup in the wind tunnel.

2.1.2 Khepera III Robot

The Khepera III mobile robot (see Figure 2.2) is used for all real-robot experiments. The Khepera
III is a differential-drive robot of about 12 cm diameter and 7 cm height (without any additional
modules), engineered and produced by K-Team SA, Switzerland. It hosts a KoreBot board running
an embedded Linux and a WLAN 802.11 CompactFlash card. The robot is equipped with two DC
motors with optical encoders enabling the use of odometry on flat surfaces, 9 infrared sensors for
obstacle avoidance, two infrared floor sensors, and 5 ultrasound sensors.

Other extension boards can be stacked on top. We developed two such extension boards1 for
detecting ethanol vapor and the wind direction. Both boards are connected to the main proces-
sor by means of the I2C bus, and sampling rates as seen from Linux are in the order of 150 Hz
maximum.

While the bare robot running Linux has an autonomy of a bit more than 2 h with new batteries,
the odor and wind modules reduce this autonomy to approximately 1 h 30 min of continuous use.

The Khepera III robot was a brand new product by the time we bought it. The first robots we
received were still prototypes in early stage. We were actively involved in debugging and testing
the platform, and fixed a number of issues in collaboration with K-Team. Hardware flaws were
addressed by K-Team, while the software was mainly improved by us. As a result of this effort,
the Khepera III Toolbox [75] was published under an open source license. This software toolbox
replaces K-Teams libkorebot and — while solving synchronization and reliability issues — offers
a much simpler and more concise API to access the sensors and actuators of the robot. In addition,
a number of small programs allow to access these sensors and actuators without writing a single
line of source code.

2.1.2.1 Computational Performance

The KoreBot, which is the main processing unit on the Khepera III robot, hosts an Intel XSCALE
PXA-255 running at 400 MHz and 64 MB RAM. XSCALE processors are based on the ARMv5
architecture (32-bit), which offers about 400 MIPS at this speed.

In order to evaluate what we can afford in terms of algorithms, we carried out performance and
power measurements with this processor. The KoreBot was thereby used on a Khepera III robot,

1Voltage regulation for both boards was outsourced to a third board which is not further discussed in this thesis.
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(a) (b)

Figure 2.2: Pictures of (a) a bare Khepera III robot, and (b) a Khepera III robot equipped with
an odor and a wind sensor board.

but all extension modules were removed. In addition, the motors were left uninitialized. Using the
power measurement chip on the battery circuitry, we then measured the voltage and current while
the processor was idle (running Linux), and while it was at maximum load. The difference is a
good estimate for the power that is needed to carry out instructions.

This difference in fact includes not only the raw instruction being executed, but whatever else
within the processor is required to execute it. Through this, we observed that the processor draws
about 185 mW more when under load (as compared to being idle), no matter what the instructions
being executed were. Note that this figure includes the efficiency of the power regulation circuitry,
but not the efficiency of the battery.

We then measured the time it takes for specific instructions to complete. For that, we run these
instructions in a tight loop and counted the number of instructions executed within a time frame
of 15 – 30 s. The results were corrected for the time it takes to execute an empty loop.

Table 2.1 lists the execution times of additions, multiplications and divisions for different data
types. (Note that these values differ significantly from processors found in current PCs, which are
mostly based on the i386 or x64 architectures with floating point support.) Due to missing floating
point instructions in the ARMv5 architecture, all floating point operations have to be emulated
with integer operations, which takes significantly more time. 64-bit integers have to be emulated
with 32-bit instructions as well, and divisions with this data type are particularly costly.

2.1.3 Odor Sensor Board

The odor sensor board is equipped with a MiCS-5521 volatile organic compound (VOC) sensor
from E2V Technologies PLC, UK. The sensitive surface inside this sensor has a very fast response
time (≈ 0.1 s upon exposure to ethanol, ≈ 1 s to recover in fresh air) as compared to other VOC
sensors on the market, which is a clear advantage for real-time robotic applications. The sensor
is not very selective, though: it reacts not only to ethanol, but also to many other volatile organic
compounds and hydrocarbons (at different sensitivities). The sensitivity to alcohol — although
not provided in the technical datasheet — seems to be comparable to other state-of-the-art VOC
sensors, and therefore in the 1 – 10 ppm range.
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Table 2.1: Time and energy required to execute an operation of a given data type on the KoreBot.
The numbers are relative factors with respect to a 32-bit integer addition (minimum and maximum
of 5 runs on 5 different Korebots each). A 32-bit integer addition takes about 29.31 ns to execute,
and draws 5.42 nJ of energy. Both these figures can be multiplied with the corresponding factor
from the table to obtain the time and energy of an operation.

Data type Addition Multiplication Division
Integer (32-bit, int) 1 1.16 – 1.17 3.99 – 4.01
Integer (64-bit, long long int) 2.5 – 2.51 4.33 – 4.97 52 – 52.1
Floating point (32-bit, float) 4.66 – 4.67 6.49 – 6.51 4.99 – 5.01
Floating point (64-bit, double) 8.99 – 9.01 10.9 – 10.9 9.83 – 9.86

To take advantage of the fast response time of the sensitive surface, air is continuously drawn
into the sensor using a small gas pump (NMP 05 S, KNF Neuberger). Without the pump, it would
take significantly longer for the plume to enter the sensor package and reach the surface. The setup
is conceptually similar to the olfaction system of humans or some animals, except that air is not
exhaled through the same pipes as it enters. Note that we did not study the influence of the pump
speed (or modulation thereof) in our experiments, but we believe that the impact is minor over a
large speed range.

A microcontroller on the same board controls the pump speed and reads the odor sensor value.
The main processor on the KoreBot can communicate with that microcontroller via the I2C bus.
The sensor values can thereby be read in two modes:

. In last value mode, the microcontroller returns the most recent value that has been com-
pletely acquired. This is useful for programs that need to measure the current odor concen-
tration.

. In streaming mode, the microcontroller returns all measured values exactly once. This is
implemented with a circular streaming buffer and a simple streaming protocol, and useful
for recording the evolution of the odor concentration.

The I2C interface also allows to set the pump speed and disable the LEDs on the board.

2.1.3.1 Sensor Comparison

There are several sensors for ethanol detection on the market. Before we chose the MiCS-5521
sensor for our odor board, we compared three such sensors with respect to sensitivity and speed.
The three sensors are from two different companies (E2V and Figaro Engineering), and based on
resistive sensor technology. All three sensors are in the same price range (approx. CHF 50.- /
piece).

It should be noted that we did not have any specialized high-quality tools available for deter-
mining the sensor parameters in an accurate fashion. Our requirements were moderate as well,
however: we only wanted to find out whether some sensors are significantly faster, or significantly
more sensitive than others.

To achieve that, we mounted the three sensors next to each other on a breadboard, and con-
nected appropriate heating and sensor resistors (see Figure 2.3). The sensors were powered by an
industrial power supply, and their sensor pins connected to different channels of an oscilloscope.
Ethanol evaporating in a small glass was blown onto the sensors with a little hand fan. To measure
the impulse response, the glass cover was removed for about 0.5 s, and then put back again.
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Figure 2.3: Circuits used to compare the different sensors. The measurement voltage (S) was the
same for all sensors. The sensors were used in their original package (as recommended, without
removing the cap), and measurement resistor as well as heater voltage were chosen according to
indications from the corresponding data sheet. The voltage U was recorded with an oscilloscope.
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Figure 2.4: Impulse response of three different resistive VOC sensors when exposed to ethanol
for about 0.5 s. While all three sensors have about the same sensitivity to ethanol, the MICS 5521
from E2V is significantly faster.
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(a) (b)

Figure 2.5: (a) Picture of the wind sensor board. (b) 3D model of the six tubes. Each tube hosts
one NTC thermistor.

The results of this test are shown in Figure 2.4. The MiCS-5521 sensor proved to be signifi-
cantly faster than the other two sensors, especially upon exposure. Regarding their sensitivity, we
did not find significant differences.

2.1.4 Wind Sensor Board

The wind sensor board consists of 6 NTC thermistors (Honeywell 111–202CAK–H01) connected
to a microcontroller. These thermistors are placed inside tubes arranged in a star-like fashion, as
shown in Figure 2.5, and heated to about 85 ◦C. The tubes are designed to laminarize the wind
flow, and the thermistors are placed at the narrowest point. When put in the wind, wind flows
through the tubes and cools down the thermistors. This in turn changes their resistance, which is
measured with the ADC of the microcontroller. This design is heavily inspired by the wind sensor
built by Ishida et al. [26].

On the microcontroller, the 6 values s1, . . . ,s6 are measured simultaneously, and passed to
a probabilistic model to infer the wind speed and direction. While the wind speed is entirely
modeled (no calibration data), the wind direction is determined by matching the measured values
against calibration data. Figure 2.6 depicts this graphically.

Formally, the algorithm proceeds as follows. In a first step, the measured values are normalized
with respect to their sum, i. e.,

qi =
si

s1 + . . .+ s6
for i = 1, . . . ,6 (2.1)

The sum s1 + . . .+ s6 holds information about the wind speed (that we did not process further),
while q1, . . . ,q6 carry information about the wind direction. Since this normalization makes one
of these values superfluous (by knowing any 5 values, the 6th value can be calculated), we only
use the subset q1, . . . ,q5.

In a second step, the following log-likelihood is calculated for each angle α:

−L(α) =
α −αprev

σ2
A

+ ∑
i=1,...,5

qi−µi,α

σ2
i,α

(2.2)

and the best angle as well as its log-likelihood value are selected:

αbest = arg min L(α) (2.3)

Lbest = L(αbest) (2.4)
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Figure 2.6: Data processing on the wind sensor board.

µi,α and σi,α thereby denote the calibration data for the NTC values (mean and standard deviation).
For a given angle α , a measurement ci is assumed to be a sample of the normal distribution
N (µi,α ,σi,α).

The standard deviation σA stands for the wind direction variation we consider probable be-
tween two samples, and a good value for it was experimentally found to be 16 ◦. (Note that σA was
kept constant and did not vary with Lbest of the previous step.)

A fixed-point integer version of this model was implemented on the microcontroller. To op-
timize the calculation time further, only angles in the range αprev ± 45 ◦ are evaluated, and fine-
grained evaluation is done in a successive approximation fashion to take advantage of the local
smoothness of L(α). Evaluation is carried out down to a resolution of 0.7 ◦ and takes about 1 ms
of execution time on the 40 MHz microcontroller.

From the main CPU, the wind direction as well as the raw sensor values can be accessed
through the I2C bus in a fashion similar to the odor sensor board.

2.1.4.1 Calibration and Error

Our calibration data2 consists of 64 tuples (µ1,α ,σ1,α , . . . ,µ6,α ,σ6,α) for 64 angles equally spaced
between 0 ◦and 360 ◦. For the log-likelihood model, mean and variance are linearly interpolated in
between these calibration angles.

Calibration is carried out by letting the robot slowly turn around itself for about 10 times
in laminar flow, and recording the normalized values (q1, . . . ,q6). Since the robot is turning at
constant speed, each recorded sample qi,n can easily be attributed to the angle βi,n at which it was
taken.

For each sensor i, the calibration values are then computed as follows:

µi,α = ∑
n

qi,n ·P(W (α) = βi,n) (2.5)

σi,α = ∑
n

(qi,n−µi,α)2 ·P(W (α) = βi,n) (2.6)

2Note that we carry out the calibration for all 6 normalized NTC values, even if only 5 are used by the log-likelihood
model.
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Figure 2.7: Calibration data of one of the wind sensor boards. Each band stands for one NTC
sensor (values after normalization). The dots in the background depict the measurements obtained
when letting the robot turn around itself. The solid lines show the mean, µi,α , and the bars indicate
the standard deviation, σi,α , computed from these measurements. µi,α and σi,α were subsequently
uploaded as calibration data onto the corresponding wind sensor board.

W (α) denotes the following Gaussian kernel:

W (α)∼N (α,(360◦
64 )2) defined over [α −180 ◦,α +180 ◦[ (2.7)

and acts as anti-aliasing filter. High frequencies in the measurements are simply averaged out, as
the 64 calibration tuples anyway could not capture them. Visual inspection (see Figure 2.7) shows
that the chosen resolution is sufficient — the measurement data used for calibration do not show
any higher frequencies.

Using this calibration procedure, a good wind sensor board achieves a standard error of less
than 4 ◦ (that is, 95.4 % of the values are within ±8 ◦, and 68.2 % within ±4 ◦ of the true wind
direction). Over the whole 360 ◦, this error is normally distributed, whereas for individual angles,
errors distributions are more complicated and tend to be skewed towards specific angles.

2.1.4.2 Version 1 of the Wind Sensor Board

Prior to the version with 6 thermistors, we built a version with 4 thermistors placed around the star-
shaped obstacle depicted in Figure 2.8. Such obstacles create turbulence especially in downwind
direction and therefore yield signals fluctuating much more than the turbulence in the wind field
would suggest. This design is therefore less suitable to determine the wind direction. Nevertheless,
we obtained accuracies in the order of ±10 ◦ in general, with the exception of a few critical angles
where the error occasionally went up to 25 ◦.

With this board, a simple floating point version of the same probabilistic algorithm (without
the P(α = A(αprev)) term) was running on the main CPU of the Khepera III robot. As this CPU
does not have any floating point unit (FPU), this limited the update rate to about 2 – 4 Hz, even
though the evaluation resolution was 10 ◦.
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(a) (b)

Figure 2.8: (a) Perspective view and (b) top view of a 3D rendering of the star-shaped obstacle
on the first version of the wind sensor board. When wind is flowing around this obstacle, the 4
thermistors are cooled down differently and as a function of the wind direction.

Figure 2.9: Sketch of the odor source.

Version 1 of the wind sensor board was used for all experiments with the bio-inspired algo-
rithms (see Chapter 3), while version 2 was used for the experiments with the algorithms based on
the probability theory (Chapter 4) and on formations (Chapter 5).

2.1.5 Odor Source

With a boiling point of 78 ◦C, ethanol evaporates quite quickly at room temperature. We therefore
based our odor source on spontaneous (unheated) evaporation of ethanol.

A sketch of the odor source is drawn in Figure 2.9. A bottle with a few deciliters of ethanol
is connected with a tube to a pump. Part of the ethanol evaporates and mixes with the air on top,
which is pumped towards the odor outlet. To increase the air-ethanol interface surface, a wick
was inserted into the tube. In addition, incoming fresh air is led with another piece of tube to the
bottom of the bottle.

Once the pump is started (at 1.2 l/min in our experiments), air continuously flows through
the whole system and keeps ethanol evaporation at an equilibrium point. This equilibrium point
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Figure 2.10: Magnitude of the wind velocity (over 11 m). Each point is an average of 25 mea-
surements with an Extech 407119 hot-wire anemometer mounted on the traversing system of the
wind tunnel. The grid has a resolution of 20 cm in both X and Y direction. The wind speed was
measured at the height of the robot’s wind sensor board.

depends on the ambient temperature, which stays almost constant over several hours of time in the
wind tunnel. (Temperatures in the wind tunnel are between 17 ◦C in a winter night and 27 ◦C on a
hot summer day. Differences between day and night are in the order of 4 ◦C.) Hence, the ethanol
concentration at the odor outlet can be considered constant during the experiments.

The nominal quantities released were never measured or recorded, as none of the experiments
showed any peculiarities that would point towards changes in the odor release rate.

An electronic board was developed allowing to control the pump speed with NMEA com-
mands sent over a USB serial port connection.

2.1.6 Wind Tunnel

The wind tunnel has a usable area of 18 x 4 m, with a height of 1.9 m. Wind speeds of up to 5 m/s
can be generated in that part of the facility, which is by far enough for odor source localization
experiments. For convenience reasons, we used about 15 m of the total length and covered this
part with a flat floor on which the robots can move without getting stuck.

The wind tunnel is furthermore equipped with a 3-axis traversing system, which allows to scan
the whole tunnel with any sensor probe.

2.1.7 Wind and Odor Profile

We are working with wind speeds of roughly 1 m/s in the wind tunnel. As shown in Figure 2.10,
the wind speed is almost homogeneous with differences of 0.2 m/s between the maximum and
minimum speeds.

Only the magnitude of the wind velocity was measured, but not its direction. The odor profile,
measured with the odor board itself and shown in Figure 2.11, reveals however that the wind is
slightly drifting towards one side of the wind tunnel, at a rate of about 5 cm/m. This is presumably
due to the fan, but we believe that this drift does not significantly affect the results.

2.1.8 Camera System

In order to allow for absolute localization of the robots in the wind tunnel, we use 6 overhead
cameras as sketched in Figure 2.12. When setting up the system, one of the major challenges
in the wind tunnel was the low ceiling: the total height is only about 1.9 m, yielding a distance
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Figure 2.11: Odor profile (over 11 m). Each measurement point is an average over about 20
seconds. The grid has a resolution of 30 cm in X direction, and 5 cm in Y direction. The odor was
measured at the height of the robot’s odor sensor board using the traversing system of the wind
tunnel.

between the camera lens and the marker on the robot of about 1.6 m. To cover an area of 18 x 4 m,
wide angle lenses (with high distortion) are necessary. We are using lenses with a focal distance
of 1.8 mm.

Another challenge was posed by the metallic (and therefore reflective) wall and ceiling sur-
faces, which make it very hard to achieve the homogeneous and diffuse light conditions ideal for
tracking. Our setup therefore works with two LEDs mounted on the robot, and a dark environ-
ment. The two LEDs are red and green, and mounted on the wind sensor board (which anyway
has to be on top of the robot). Despite the Bayer pattern of the camera, red and green can be
distinguished with high accuracy using simple thresholding. As the background is all black, this
allows for robust tracking of multiple robots almost anywhere in the wind tunnel.

The current system allows us to achieve frame rates of 10 – 20 Hz, and delays of 100 ms (from
image acquisition until the robots receive the position information). The spatial resolution of the
system is about 1 – 2 cm, while the accuracy varies between 2 and 8 cm depending on whether a
robot appears in the image center or close to the border. Given that robots are moving at 10 –
30 cm/s (i. e., 1 – 3 cm between camera frames), this is a good trade-off between spatial and tem-
poral resolution.

2.1.8.1 Camera Trigger

To synchronize the 6 cameras, we built the trigger box displayed in Figure 2.13. This box provides
power and a trigger signal to up to 8 cameras. Cameras are configured to start image acquisition
on this external trigger. The trigger is generated by a microcontroller, and its interval can be
configured via USB.

The following procedure allows us to get the cameras into synchronized state:

1. Disable the trigger signal. This is done by sending an NMEA sentence over USB to the
trigger box.

2. Reset and start all cameras, and wait until they are ready. (SwisTrack takes care of that when
a production run is launched.)

3. Set the trigger interval and enable the trigger signal, again by sending an NMEA sentence
to the trigger box.
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Figure 2.12: Sketch of the camera system setup, and its physical and logical connections. C1, . . . ,
C6 are the cameras, while ST1, . . . , ST6 are instances of SwisTrack [73], the software processing
the camera images and determining the robot positions. The position merger is a separate program
running on PC3 which collects the positions reported by all cameras, merges them, and sends them
to the robot (for positioning, closed-loop), or logs them (for trajectory analysis, open-loop).

Experience with the system has shown that this is extremely reliable, and due to the very low
probability that trigger signals are being lost in the cable, the camera system remains synchronized
for hours.

2.1.8.2 SwisTrack

Camera images are read and processed by SwisTrack 4 [73]. SwisTrack is an open source tracking
software for multi-agent systems, and was at version 3 [76] at the beginning of this PhD thesis. We
greatly enhanced the user interface, introduced a component-based architecture and added support
for GigE cameras. With the help of other developers who added new features as well, version 4 of
SwisTrack was released in 2007, and gradually improved and enhanced later on. Notably thanks
to the new component-based architecture, the project attracted a series of researchers from other

Figure 2.13: Picture of the camera trigger box (front and back).
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Figure 2.14: Screen shot of the optimization program. The big area in the lower part shows
the wind tunnel arena with the robot trajectories recorded using wheel odometry and optimized on
their intersection points. The small areas in the upper part of the screen show the same trajectories
as recorded by each of the 6 cameras. Circles close to image borders are highly distorted, which
is what we want to correct for.

universities, who partly contributed their own components, and partly just used the software.
Each of the 6 cameras runs a separate instance of SwisTrack. For performance reasons, two

cameras each are served by one computer. As images are acquired, they are thresholded to find the
red and the green LEDs using a standard blob detection algorithm. Pairs of red and green blobs
sitting close enough to each other are then combined to particles (robots), and the obtained particle
positions are projected into a world coordinate system using a 2D version of the Tsai transform
[77].

A separate program collects the particles reported by each SwisTrack instance and merges
them. Merging is based on a distance criterion, i. e., particles that are very close to each other
(< 13 cm ≈ diameter of the Khepera III robot) are merged into one robot. The program then
stores the robot positions into a file (open loop, e. g., for offline analysis later on) and sends it via
UDP to the robots if desired (closed loop, e. g., for absolute localization).

2.1.8.3 Calibration

While image acquisition and blob detection parameters can easily be tuned by hand, the Tsai
transform requires a more sophisticated calibration procedure.

The Tsai transform is a non-linear model of the projection of a scene onto a camera chip
surface. It takes into account pixel size, spherical lens distortion, misalignments between the
camera chip and the lens, as well as 3D rotation and translation. For square pixels, this amounts
to 11 parameters. Note that most of these parameters have a direct physical meanings (e. g., focal
length, rotation, . . . ) and can therefore be guessed quite accurately. Nevertheless, tiny changes
in the parameters can yield substantial errors, and systematic parameter optimization is therefore
indispensable.

To find these 11 parameters, we first start by recording image-world point pairs. For that, we
calibrate the odometry of a Khepera III robot and let it move to create approximately the rose
pattern shown in Figure 2.14. This pattern consists of 49 circles, for which we record the real-
world movement with wheel odometry on the robot, and the image position with the cameras.

Since odometry allows us to obtain the relative movement only but not the absolute real-world
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Figure 2.15: Sample plots of the Tsai transform with fitted parameters. The parameters of the
transform were first optimized using linear search, and in a second step improved using a PSO
algorithm.

position of the robot, we do not a priori know where the circles are. Using the information from
the camera system, we can however find intersection points between circles. Since intersections
must occur at the same physical location, we can apply an optimization algorithm to infer the
relative position among circles by minimizing the distance between intersection points. In order
to obtain absolute coordinates, we acquire three reference points (with reference circles) at known
locations and add them to the optimizer.

On clean data sets with well calibrated wheel odometry on the robot, optimization takes a
few seconds and achieves global accuracies in the order of 5 cm, and local accuracies (distances
between nearby points) of less than 2 cm. This is absolutely sufficient for our purposes.

Each image position of the robot recorded by any of the 6 cameras can now be assigned to
a real-world position in a global reference frame. This global reference frame is furthermore the
same for all cameras. These image-world pairs are then used to fit the parameters of the Tsai
transform. We implemented two version for this:

. A linear search optimization algorithm starts from an initial guess of the parameter set,
and optimizes the parameters one-by-one in an order that was found to yield good results.
Within seconds, solutions with a maximum error of below 10 cm (at the border of the camera
image) are obtained.

. These results can be further improved using a PSO algorithm, which usually comes up with
solutions around 8 cm after a few minutes of optimization. As an example, plots for two
cameras are provided in Figure 2.15.

This calibration procedure has two important advantages. First, all cameras are calibrated at
the same time based on the same raw data and the same global coordinate frame. This not only
saves time, but calibrates the systems as a whole, instead of calibrating each camera individu-
ally. Therefore, positions in overlapping areas (i. e., areas seen by more than one camera) will
automatically be consistent. Second, the raw data for calibration are recorded using exactly the
same markers (red/green LEDs) at exactly the same height above the floor as during the experi-
ments later on. This excludes errors that could occur with misaligned markers or different marker
detection techniques.
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2.2 Simulation Setup

In Webots [72], a commercial realistic robotic simulator, we implemented the same experimental
setup (see Figure 2.1) in simulation. Webots ships with a calibrated model of the Khepera III
robot which allows to use almost the same software implementation of the algorithms as on the
real robots.

As Webots does not include any support for odor or smoke, the simulation environment (Fig-
ure 2.17) was augmented with a wind and odor propagation model, and the robot model was
extended with the corresponding sensors to measure the odor concentration and a wind direction
(Figure 2.16).

2.2.1 Experimental Arena

The experimental arena is a rectangular area of 16 m length and 4 m width, which corresponds
roughly to the dimensions of the wind tunnel. At 1 m from one end of the arena, a circular odor
source of radius 12 cm is placed. The robot is placed at roughly 14.5 m downwind from that spot.

2.2.2 Advection Model

A constant wind field of 1 m/s is used. This corresponds to a constant laminar flow which is
comparable to the one in the wind tunnel. In the coordinate system indicated in Figure 2.17, the
wind vector at position u, a(u), can be written as

a(u) =

 1
0
0

 (2.8)

2.2.3 Odor Propagation Model

The odor propagation model closely resembles the filament-based model proposed by Farrell et
al. [7]. This model is easy to implement and requires only a very limited amount of CPU power.
Yet, it generates an intermittent plume which is similar to the real plume in the wind tunnel.

Odor is thereby simulated as a set of filaments (i = 0, . . . ,N), each containing a constant
amount s = 8.3 ·109 of molecules or particles. Each filament is defined by its position, pi,t , and its
width, wi,t .

In each time step, the position of a filament is updated according to the wind flow and a
stochastic process:

pi,t+∆t = pi,t +a(pi,t)∆t +vp (2.9)

The stochastic component vp is a vector of three independent Gaussian random variables, N (0,σ2
p),

with standard deviation σp = 0.1 m. The simulation time step, ∆t, was set to 32 ms.
To model molecular dispersion, filaments become wider with time while their peak concentra-

tion decreases. The width of a filament evolves as

wi,t+∆t = wi,t +
γ

2wi,t
with γ = 4 ·10−7m2/s (2.10)

The odor source releases 100 such filaments per second with an initial width of wi,0 = 10 cm
and an initial position which is uniformly distributed over the circular area of the source. This
yields a plume comparable to the real plume in the wind tunnel. Note that no rigorous calibration
of the filament-based model vs. reality has been carried out.
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Figure 2.16: Simulated Khepera III robot equipped with an odor sensor (small cylinder on top of
the robot) and a wind sensor (big cylinder). The hexagons in the air represent odor filaments.

2.2.4 Odor Sensor Model

The odor concentration at time t and position u is calculated as the sum over the concentration
contribution of all filaments,

Ct(u) =
N

∑
i=0

ci,t(u) (2.11)

and each filament i contributes

ci,t(u) =
s

w3
i,t

exp

(
|u−pi,t |

w2
i,t

)
(2.12)

to the concentration. Hence, the concentration decays exponentially with increasing distance from
the center of a filament.

The virtual odor sensor reports this concentration Ct(u) without adding any additional noise,
as the noise is negligible even on the real platform.

2.2.5 Wind Direction Sensor Model

The wind sensor reports a noisy wind measurement,

as(u) = a(u)+va (2.13)

where va is a vector with samples of a zero-mean normal distribution (N (0,σ2
a )). Since the wind

field is constant in all our simulations, the reported value in world coordinates is simply

as(u) =

 1
0
0

+

 N (0,σ2
a )

N (0,σ2
a )

N (0,σ2
a )

 (2.14)

This vector is rotated into the local reference system of the robot to account for the robot’s pose.
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Figure 2.17: Simulated environment in Webots.

2.3 Summary and Conclusion

With the tools introduced in this chapter, we have a robust and flexible setup available for running
odor source localization experiments with real robots and in simulation. It should however be
noted that the development effort was a substantial part of the present PhD work. It took us almost
2 years until the first experiments (still single-robot) could be carried out in the wind tunnel, and
the setup was gradually improved and enhanced afterwards. The current state of the setup allows
to quickly and painlessly carry out dozens of experimental runs in the wind tunnel, and hundreds
of runs in simulation.

One may argue that we went a step too far in terms of robustness of the setup, and invested
too much time in fixing issues that would only come up every now and then. This is certainly true
for SwisTrack [73], for which we invested several man-months to have a nice software that allows
us to dynamically change parameters in a graphical front-end. Even if tuning these parameters in
the code is a tedious and time-consuming operation, we would probably have spent several days
or weeks doing that, but not months.

Yet, this robustness of the setup made it possible for students to help with this project and
be efficient, even if their projects often lasted for a few weeks only. Thanks to the Khepera III
Toolbox [75], for instance, students didn’t need much guidance when they started working with
the Khepera III robot. They not only had a good documentation on how to use the robot available,
but also a substantial amount of source code to start with. This is very motivating for students, and
saves a lot of time in direct supervision.

In addition, thanks to publishing them as open source projects, both SwisTrack and the Khep-
era III Toolbox were picked up by many other researchers all around the world, who used them
and contributed to these projects in a variety of ways. From a global perspective, this open source
approach is therefore very beneficial to the research community as a whole.
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3 Bio-Inspired Algorithms

Biology offers plenty of examples for odor source localization. It is therefore not surprising that a
number of bio-inspired algorithms have been proposed in the scientific literature. In 2005 (at the
beginning of this thesis), such algorithms were ubiquitous in the odor source localization literature,
with the casting behavior of moths being the most prominent one being imitated. Gradient-based
approaches were known to not perform well in the intermittent plume structure, and biology of-
fered attractive alternatives to be studied. There are indeed good reasons for considering such
algorithms:

. A number of animals — from small insects to dogs and taller species — are very good at lo-
calizing odor sources [1]. Many species rely on this ability for mating and food scavenging,
two crucial tasks directly affecting survival in evolutionary terms.

. Simple behavioral models for moths are known [51]. Implementing such behaviors on a real
robot is straightforward, and therefore attractive for research and applications.

Bio-inspired algorithms were therefore the first algorithms we tested in our setup. More specifi-
cally, we implemented three such algorithms (casting, surge-spiral, and surge-cast), and evaluated
them through simulation and real-robot experiments with different parameters, in different wind
flows, and with multi-robot systems.

In the first part of this chapter, we first introduce the algorithms (Section 3.1), and report on
experiments with the real robots (Section 3.2.1) and in simulation (Section 3.2.2) in laminar flow.
We then compare the results of all these experiments with the theoretically calculated performance
in Section 3.3. In Section 3.4, we add obstacles to the setup to study the impact of turbulence on
the algorithms.

The second part of the chapter is devoted to multi-robot version of the same algorithms. Using
multiple robots instead of just one is a elemental extension which is intuitively thought of improv-
ing the performance, especially if the robots collaborate. In Section 3.5, we report on simulation
experiments with up to 5 robots that are not collaborating, and discuss collaboration in Section 3.6.

3.1 Algorithms

The three algorithms discussed in this chapter are a combination of upwind surge, casting, and
spiraling — three behaviors that have been observed with insects [51]. The algorithms use only
binary odor information, that is, they either perceive the odor or do not perceive any odor, but
ignore different concentration levels. Commonly, the measured concentration is thresholded to
obtain this binary value, and more elaborate processing was used only for the experiments with
obstacles.

Furthermore, all three algorithms need a wind sensor to measure the wind direction. As
molecules are mainly transported by advection, this piece of information is very valuable, and as
important as the odor sensor in environments with a main wind flow. The wind speed is ignored.
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42 3.1 Algorithms

Figure 3.1: Sketch of the casting algorithm. The stars indicate where the wind direction is mea-
sured.

Since we are only interested in the plume tracking behavior, the robot starts in the plume, and
declares failure if it gets too far away from it1. This allows us to rule out arena geometry effects,
which could greatly influence the results (e. g., high variance introduced by randomized search
techniques).

Similarly, source declaration is done by a supervisor (ideal source declaration) and therefore
does not affect the results.2 Experiments are considered successful if the robot has come in physi-
cal vicinity of the source.

3.1.1 The Casting Algorithm

The casting algorithm is very similar the one described by Li et al. [53]. As shown in Figure 3.1, a
robot in the plume moves upwind with an angle β until it is out of the plume for a certain distance,
denoted dlost. Once the plume is lost, the robot turns and moves crosswind until it hits an odor
packet, and then moves upwind with angle β again.

The wind direction is measured each time the robot switches to plume reacquisition, and when
it encounters the plume again.

3.1.2 Surge-Spiral

The surge-spiral algorithm is similar to Hayes’ algorithm presented in [9], except that here we
focus exclusively on its use for plume traversing. Hence, we have a single spiral gap parameter.

A robot in the plume moves straight upwind until it loses the plume for a distance dlost. It then
tries to reacquire the plume by moving along an Archimedean spiral with gap size dgap. Unlike
[9], we start our spiral in upwind direction (as drawn in Figure 3.2) to avoid the 90 ◦turn required
in [9].

The wind direction is measured when the robot switches from upwind surge to spiraling, and
when it switches back to upwind surge.

1On the real robots, this is done using IR sensors detecting the arena boundaries. In Webots, a supervisor controller
takes care of this.

2On the real robots, this is done using IR sensors detecting a specific colored patch on the floor. In Webots, a
supervisor controller takes care of this.
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Figure 3.2: Sketch of the surge-spiral algorithm. The star indicates where the wind direction is
measured.

Figure 3.3: Sketch of the surge-cast algorithm. The stars indicate where the wind direction is
measured.

3.1.3 The Surge-Cast Algorithm

The surge-cast algorithm [78] is a combination of upwind surge and cross-wind casting. It is
similar to the surge-spiral algorithm, with the spiral being replaced by cross-wind movement.

A robot in the plume moves straight upwind until it loses the plume for a distance dlost. It then
tries to reacquire the plume by moving cross-wind for a set distance (dcast), first on one side and
then on the other. To maximize the chances of hitting the plume in the first cross-wind movement,
the robot measures the wind direction to estimate from which side it left the plume.

If the robot did not reacquire the plume by casting, the run is considered unsuccessful. In a real
application, the robot would probably switch back to plume finding behavior, or try to reacquire
the plume with a larger cast distance or with spiraling.

The wind direction is measured when the robot switches from upwind surge to casting and
when it switches back to upwind surge, as indicated in Figure 3.3.
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Table 3.1: Mean values (except for the success ratio) of all configurations tested with the real
robots in the wind tunnel. 20 runs per configuration were carried out. The distance overhead is
the traveled distance divided by the upwind distance ( dt

du
).

Configuration A B C D E F G
Success ratio 90 % 100 % 85 % 100 % 86.4 % 90 % 40 %
Distance overhead [m/m] 1.1638 1.4323 1.6256 1.1429 1.1211 1.102 1.0585
Traveled distance [m] 17.08 21.08 23.90 16.65 16.36 16.08 15.33
Time to target [s] 179.9 231.2 263.3 161.2 165.4 162.1 152.0
Ratio in plume 78.8 % 63.3 % 58.1 % 82.0 % 83.4 % 84.7 % 86.9 %
Upwind speed [m/s] 0.083 0.064 0.056 0.091 0.089 0.090 0.096
Mean robot speed [m/s] 0.096 0.091 0.091 0.103 0.099 0.099 0.101

3.2 Results in Laminar Flow

3.2.1 Real Robots

We first carried out experiments with the real robots in the wind tunnel. More precisely, we carried
out 20 runs for each of the following configurations:

Algorithm Specific parameter
A Casting β = 10 ◦

B Casting β = 20 ◦

C Casting β = 30 ◦

D Surge-spiral dgap = 0.58 m
E Surge-cast dcast = 0.72 m
F Surge-cast dcast = 0.43 m
G Surge-cast dcast = 0.14 m

The forward speed of the robot (on straight lines) was approximately 10.6 cm/s and the plume
lost distance was set to dlost = 40 cm for all experiments. The plume threshold was determined
before each run by measuring the response of the sensor in fresh air in the wind tunnel.

In each run, the robot was released in the odor at a position about 14.5 m downwind from
the target area, and the corresponding algorithm was launched. If the robot reached the target
area around the odor outlet (determined with the floor sensors), the run was considered success-
ful. Whenever a robot gave up or touched an arena wall (determined with the infrared proximity
sensors), the run was stopped and considered unsuccessful. During the run, the trajectory (using
odometry) and the odor concentration were recorded. Distance and upwind distance were derived
from the trajectory, and the duration of each run was measured on a host computer.

Table 3.1 shows the mean values of the data recorded during the experiments. Besides the
success ratio, the most interesting of these values is the ratio between the traveled distance (dt)
and the upwind distance (du), which is plotted in Figure 3.4. This value indicates what distance
the robot had to drive in order to come 1 m closer to the source, and is therefore bigger or equal to
1. Furthermore, a selection of runs of all three algorithms is plotted in Figure 3.5.

The surprisingly good result of configuration A should be taken with a grain of salt, since
the wheel diameter difference produced some bending of the trajectory (see Figure 3.5) which
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Figure 3.4: Distance overhead (mean with 95 % confidence interval for normal data) obtained
through real-robot experiments. Only successful runs were included in the analysis, and the suc-
cess rates are indicated in Table 3.1. Lower values are better.
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Figure 3.5: Sample real-robot trajectories with odor concentration shading produced by the real
robot. The bars below the plots indicate the translation from shading to odor sensor response (in
arbitrary units). Note that straight trajectories are bent because of a tiny difference (0.08 mm)
in wheel diameter between the left and the right wheel. The plume threshold was set to 100
units above the baseline concentration value indicated on the left side of the colored bar. (a,
b) Successful runs of the casting algorithm. (c) Successful, but unlucky run of the surge-spiral
algorithm. (d) Successful, but unlucky run of the surge-cast algorithm.
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worked in favor of the algorithm. Without this effect, one would expect the success rate of this
configuration to be very low [79].

At first glance, the surge-cast algorithm outperforms casting and is at least as good as the
surge-spiral algorithm. The overlapping confidence intervals do not allow us to make a statistical
judgment about the configurations D, E and F. However, since the surge-cast algorithm moves
backward and forward only instead of making complete circles, its performance is expected to be
slightly better.

The current implementation of surge-cast is less robust than surge-spiral. This is mainly the
case for configuration G, in which the cross-wind distance is clearly too small. However, one
should bear in mind that the algorithm gives up after unsuccessful cross-wind movement, instead
of switching to spiraling (as moths do) or increasing the cross-wind distance.

3.2.2 Robotic Simulation

After the real-robot experiments, we passed on to experiments with the Webots simulation envi-
ronment presented in Section 2.2, and analyzed three parameters for each of the three algorithms,
totaling to 9 sets of experiments:

Algorithm Specific parameter σa dlost

A Casting variable 10 cm 61.4 cm
B Casting β = 25 ◦ variable 61.4 cm
C Casting β = 25 ◦ 10 cm variable
D Surge-spiral variable 10 cm 61.4 cm
E Surge-spiral dgap = 22.2 cm variable 61.4 cm
F Surge-spiral dgap = 22.2 cm 10 cm variable
G Surge-cast variable 10 cm 61.4 cm
H Surge-cast dcast = 27 cm variable 61.4 cm
I Surge-cast dcast = 27 cm 10 cm variable

dlost stands for the plume lost distance, while σa denotes the noise of the wind direction sensor,
as defined in Section 2.2.5. Note that this noise is expressed in meters, as it is the standard devia-
tion of the error term added to the wind vector. Each set of experiments consists of 9 choices for
the variable parameter with 50 independent runs each. In each run, the robot was released in the
odor at a position about 14.5 m downwind from the target area, and the corresponding algorithm
was launched. If the robot reached the odor source, the run was considered successful. If the
robot touched an arena wall, the run was aborted and declared unsuccessful. Distance and upwind
distance were derived from the trajectory, recorded during the run.

The forward speed of the robot (on straight lines) was 10.6 cm/s and therefore the same as with
the real-robot experiments in the wind tunnel. The plume threshold was set to c = 100.

Sample runs for three chosen parameter configurations are shown in Figure 3.6. In the fol-
lowing paragraphs, we discuss the results for each of the three algorithms. A comparison with the
real-robot results will be provided later in Section 3.3.

3.2.2.1 Casting

The results for the casting algorithm are displayed in Figure 3.7. The upwind angle has a major
influence on the performance. Small angles yield a low distance overhead, but also a low success
rate. In our setup, only configurations with β > 20 ◦ resulted in acceptable success rates.
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Figure 3.6: Successful simulation runs of all three algorithms (configurations A, D and G). The
bars below the plots indicate the concentration shading.

A similar behavior can be observed for the plume lost distance: on one end of the scale, the
success rate drops significantly, whereas on the other end, the performance gets worse. Hence,
choosing parameters for this algorithm is ultimately a trade-off between performance and robust-
ness.

The accuracy of the wind sensor only has a marginal impact on the performance, and no visible
influence on the robustness as long as the accuracy is below a certain threshold. If the noise is too
high, however, the algorithm does not work at all.

3.2.2.2 Surge-Spiral

The surge-spiral algorithm is extremely robust and virtually all 1350 runs succeeded. With the
simple plume used in this setup, a spiral of increasing radius will always reacquire the plume be-
fore hitting a wall. In addition, the performance is fairly good over a wide parameter range. As
expected, a small spiral gap is advantageous, at least as long as the robot reacquires the plume
within one turn. Figure 3.8 (E) also suggests that higher dlost yield slightly better performance.
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Figure 3.7: Simulation results obtained with the casting algorithm. The error bars indicate the
95 % confidence interval for the mean (assuming normally distributed data). A: With varying
upwind angle (β ). B: With varying plume lost distance (dlost). C: With varying noise on the wind
sensor reading (σa). The last bar is omitted because of the small number of successful runs.
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 F: Surge−spiral with varying wind sensor noise
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Figure 3.8: Simulation results obtained with the surge-spiral algorithm. The error bars indicate
the 95 % confidence interval for the mean (assuming normally distributed data). D: With varying
spiral gap (dgap). E: With varying plume lost distance (dlost). F: With varying noise on the wind
sensor reading (σa).
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 G: Surge−cast with varying cast distance
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Figure 3.9: Simulation results obtained with the surge-cast algorithm. The error bars indicate
the 95 % confidence interval for the mean (assuming normally distributed data). G: With varying
cast distance (dcast). H: With varying plume lost distance (dlost). I: With varying noise on the wind
sensor reading (σa).
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This, however, is simply due to the fact that the upwind steps get larger, and could have a neg-
ative influence in non-laminar flow conditions. In contrast to the casting algorithm, wind sensor
accuracy only affects the distance overhead of surge-spiral, and not its success rate. For high
noise values, the distance overhead becomes significantly larger, as the algorithm more often fails
guessing on which side the plume is.

3.2.2.3 Surge-Cast

The results obtained with the surge-cast algorithm are comparable to those of the surge-spiral
algorithm. As expected, the distance overhead grows almost linearly with the cast distance, but at
a fairly low rate. Furthermore, for very low cast distances, the algorithm fails to work reliably -
the robot simply does not get back to the plume.

Furthermore, the wind sensor noise seems to mainly affect the success rate, which we have
observed with the casting algorithm as well.

3.3 Theoretical Analysis of the Laminar Flow Performance

In addition to the real-robot experiments and the simulation experiments, we studied the same three
algorithms from a theoretical perspective. Within a simple framework, we derive two equations for
each algorithm: an analytical expression for the performance under ideal conditions with a perfect
wind sensor, and a probabilistic model taking into account the error of the wind direction sensor.
The latter allows us to numerically calculate the performance distribution, which we compare to
the results obtained in simulation and with the real robots.

The theoretical model is thereby closely related to the experimental setup used for the real
robots and in simulation experiments. However, plume and sensors are abstracted to simple math-
ematical objects that allow for a mathematical analysis. A comparison of the three models is given
in Table 3.2.

Table 3.2: Comparison of the setup for the real-robot and simulation experiments, and the theo-
retical model.

Real robots Simulation Theory
Environment wind tunnel Webots [72] MATLAB

Wind ≈ laminar laminar laminar
Plume real, ethanol filaments [7] straight line
Plume width (w) ≈ 35 cm 35.4 cm 35.4 cm
dlost ≈ 60 cm 61.4 cm 61.4 cm
Robot Khepera III Khepera III point
Locomotion diff.-drive diff.-drive holonomic
Odometry good perfect perfect
Wind sensor error non-gaussian N (0,(5.7 ◦)2) N (0,(5.7 ◦)2)
Odor sensor error negligible Gaussian, small 0
Odor sensor delay t90% ≈ 0.1 s none none

3.3.1 Wind and Plume Model

We consider a 2D space with a perfectly laminar wind flow and a single odor source emitting a
chemical substance at constant rate. This substance is only transported by (large-scale) advection.
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Figure 3.10: Preprocessing of the odor concentration signal by the robots. In the real-robot and
simulation experiments, the concentration threshold was tuned manually. Note that the plume lost
distance, dlost, is measured along the trajectory of the robot, while the plume width, w, is measured
in cross-wind direction.

Small-scale advection (responsible for the intermittent structure of the plume) and diffusion (an
effect a few orders of magnitude smaller) are not modeled. For simplicity and without loss of
generality, the wind is blowing in positive x direction at a speed of 1 m/s, i. e.,

a(u) =
(

1
0

)
[m/s] (3.1)

at any position u.
Since the algorithms only take a binary input value from the odor sensor, we model our plume

as a straight line of constant width w starting at the odor source and extending to infinity in the
direction of the wind. The robot — modeled as a point in 2D space — is considered in the plume
if it lies on this line, and out of the plume otherwise.

While this model is far from physical reality, the behavior of all three algorithms in such a
simplified model is approximately the same as in the real plume. As the algorithms pass the
(binary) odor sensor input through a filter to smooth out all “gaps” shorter than the distance dlost
(see Figure 3.10), there is no need to model these gaps. This is actually the purpose of that filter,
which has been shown to work well in the experiments with the real robot.

3.3.2 Wind Direction Sensor Model

The output of the wind direction sensor at position u, as(u), is modeled as an unbiased sensor with
added Gaussian noise. That is,

as(u) = a(u)+va (3.2)

where

va ∼
(

N (0,σ2
a )

N (0,σ2
a )

)
[m/s] (3.3)
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(a) Casting (b) Surge-spiral (c) Surge-cast

Figure 3.11: Basic patterns (building blocks) of the three algorithms. In one iteration, the robot
moves along the thick line and takes wind sensor measurements (α1 and α2) at the places indicated
by the stars.

This is the same model that we used in simulation. Even though the noise is added to the X and
Y components of the wind vector, the distribution of the angular noise is approximately Gaussian
as well for sufficiently small σa. Each wind direction measurement is therefore susceptible to an
angular error modeled by the random variable

α ∼N (0,
σ2

a

|a(u)|
) = N (0,σ2

a ) with σa = 0.1[rad] (3.4)

3.3.3 Performance of the Casting Algorithm

We now calculate the distance overhead for all three algorithms with and without taking into
account the wind direction sensor noise. For the case without noise, we derive an expression
for the mean distance overhead, do, while for the case with the wind direction sensor noise, we
numerically calculate the distribution of distance overhead and the mean of the success rate, sr.

The procedure is the same with all three algorithms, as they all proceed by repeating a basic
pattern until the source is found. These basic patterns are depicted in Figure 3.11. Each repetition
of this pattern (called iteration in the remainder of this chapter) brings the robot closer to the
source, but also entails a certain probability to lose the plume completely. In this section, we
present our approach in details for the casting algorithm, while the following sections only provide
the equations for the other two algorithms.

3.3.3.1 Ideal Wind Direction Sensor

With an ideal wind sensor (α1 = 0, α2 = 0), the trajectory produced by the casting algorithm in
our theoretical model is deterministic. Its distance overhead can be written as

do(β ) =
1

sinβ
+ f (1+ sinβ )(
1

sinβ
+ f
)

cosβ

≥ 1
cosβ

(3.5)

with
f =

dlost

w
(3.6)
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Even though this expression may look complicated, it can easily be derived by looking at the
geometry of the trajectory.

3.3.3.2 Noisy Wind Direction Sensor

Distribution of one iteration With the casting algorithm, the basic pattern is produced by the
following two steps:

1. Move upwind with an upwind angle β until the plume is lost for a distance greater than dlost.

2. Move cross-wind until the plume is found again. Whether to turn left or right for this
cross-wind motion is decided using the measured wind direction (with respect to the robot’s
heading).

Both steps consist of measuring the wind direction, turning towards the respective angle and mov-
ing forward while continuously sampling the odor concentration. While sampling speeds and
accelerations are large enough to be ignored, the wind direction measurement introduces a non-
negligible error. Each of the two readings is susceptible to noise modeled by the random variables
α1 resp. α2. Note that as each reading is assumed to be independent, α1 and α2 are independent
as well. Hence, the robot actually goes upwind with an angle β −α1 and cross-wind with π

2 +α2.
Under these assumptions, we can — for a single iteration — calculate the distribution of the

distance that the robot covers (dt), the distribution of the distance by which it approaches the
source (du), as well as the probability that the robot loses the plume completely and fails the run
(1− s). Using trigonometry, the following equations3 are obtained:

dt = l+dlost
sin |β −α1|

cosα2
(3.7)

du = lcos(β −α1)+dlost sin |β −α1| tanα2 (3.8)

s =
{

1 if α2 < β −α1
0 otherwise

(3.9)

where

l =
w′

sin |β −α1|
+dlost (3.10)

w′ =
{

w if α1 < β

0 otherwise
(3.11)

Note that dt, du and s are dependent random variables, as they are generated using the same
samples of α1 and α2.

The mean success probability of a single iteration can be calculated by marginalizing over α1
and α2:

E(s) =
∫

∞

−∞

∫
∞

−∞

P(s|α1,α2)P(α1)P(α2) dα1dα2 (3.12)

The mean distance overhead, E( dt
du

), of one iteration could be calculated in a similar fashion, but
is not of particular interest.

3To simplify the notation, we use random variables (i. e., distributions) as if they were regular variables (e. g., a
sample of that distribution), but write them in bold font.
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Figure 3.12: (dt,du) space with the first 3 iterations (overlaid) of the casting algorithm with β =
30 ◦. S(1)(t,u) is the distribution for a single iteration and all other distributions are convolutions
of it. The gray shaded lower right triangle is impossible to reach because dt > du (by construction).

Distribution of a whole run What we would like to calculate instead is the distance overhead
of a complete run. To do that, we need to combine the iteration distributions until the upwind
distance exceeds 14 m. Let us define

S(1)(t,u) = P(dt = t,du = u,s = 1) (3.13)

as the distribution of the successful runs after one iteration in the space spanned by dt and du. Note
that S(t,u) is not a probability density function in the strict sense, because∫

∞

−∞

S(1)(t,u) dtdu = E(s)≤ 1 (3.14)

While the distribution of the successful runs after two iterations, S(2)(t,u) is simply the convolu-
tion of S(1)(t,u) with itself, the distribution after three iterations, S(3)(t,u), is the convolution of
S(2)(t,u) with S(1)(t,u), and so on. Hence, we can combine any number of iterations by applying
the convolution equation,

S(i)(t,u) =
∫

∞

−∞

S(i−1)(t− t1,u−u1)S(1)(t1,u1) dt1du1 (3.15)

once for each added iteration. Note that this is only valid because iterations are mutually indepen-
dent, i. e., α

( j)
1 is indep. of α

(k)
1 , and α

( j)
2 is indep. of α

(k)
2 , ∀ j 6= k. As an example, the first three

iterations for β = 30 ◦ are depicted in Figure 3.12.
Since S(1)(t,u) does not include the failing runs after one iteration, S(i)(t,u) do not include

them neither. Hence, the fraction of successful runs after i iterations is simply

E(s(i)) =
∫

∞

−∞

S(i)(t,u) dtdu = (E(s))i ≤ 1 (3.16)
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To calculate the distribution of complete runs, it suffices to combine iterations until

S(i)(t,u) = 0 ∀u < 14 m (3.17)

and to collect statistics.

Implementation Issues Carrying out the above procedure analytically is clearly not viable.
However, the equations can easily be solved numerically, either with a Monte-Carlo approach
(randomly selecting input samples and calculating a histogram of the output samples) or by dis-
cretizing the distributions and calculating the joint distributions numerically. We have chosen
the second approach, as it provides smoother output distributions. This corresponds to particle
filtering with fixed particles placed on a regular grid.

The implementation is fairly straightforward. We have chosen a resolution of 0.02 ◦ for α1 and
α2 and cut them off at ±25 ◦. The distribution S(i)(t,u) was approximated with a 30 m by 30 m
square lattice with a resolution of 1 cm in each direction. Care must be taken with big values for dt
and du that do not fit within this lattice, as one would lose probability mass when ignoring them.
We simply added these values to the cell (30 m, 30 m) which approximates their dt

du
ratio with 1.

In addition, equation (3.15) is in O(n2) where n denotes the number of cells of S(i)(t,u), which
can be large. Since most values in this matrix are zero or very small, however, the algorithm can
be boosted by using sparse matrices. After each iteration, we furthermore removed all values with
du > 14 m after having calculated the necessary statistics.

3.3.3.3 Results

Figure 3.13 shows the distance overhead of the casting algorithm, and Figure 3.14 the correspond-
ing success rates. For comparison purposes, we overlaid the real-robot and and simulation results
on both plots.

For β > 15 ◦, the theoretically derived distance overhead distribution is almost normal and in
accordance with our previous findings [80].

The simulation results (boxes) match very well with the theoretical distribution. Small differ-
ences with larger upwind angles could be due to the placement of the odor sensor. In the theoretical
model, this sensor was assumed to be centered on the robot, while the real sensor was put in front
of the robot, at about 7 cm from its kinematic center.

In addition, equation (3.5) (dashed line) for an ideal wind sensor is a very good approximation
of the mean obtained with our non-ideal wind sensor. While an ideal wind sensor would allow us
to reach the optimal performance for very steep upwind angles, its performance is slightly worse
for β > 8 ◦. Randomness can indeed boost the performance here, as the relationship between
performance and effective upwind angle is not linear.

The real-robot results are significantly worse in terms of distance overhead, but better when
comparing the success rate (except for β = 30 ◦). Reasons for this are believed to be two-fold.
First, closer inspection of the real robot trajectories revealed that the cross-wind angle was almost
systematically biased towards the downwind direction. Similarly, the actual upwind angle was
2 ◦ – 5 ◦ higher than what was configured. This is an artifact of the measurement resolution of the
wind direction sensor, which was only 10 ◦ [78]. Second, the flow right in front of the odor source
was slightly turbulent and sometimes caused additional errors in the wind direction measurement.
Even though these were manually removed in the most detrimental cases, the trajectories close to
the source are still slightly less ideal.
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Figure 3.13: Theoretical and experimental distance overhead of the casting algorithm. Green
stars: Real-robot experiments (20 runs each). Blue boxes and red crosses: Box-plot of the sim-
ulation results (50 runs each). The box shows the lower/upper quartile and the red line denotes
the median. Red crosses stand for outliers. Gray shading: Theoretically derived distribution of
the distance overhead for a noisy wind direction sensor. Solid black line: Mean of the latter.
Dashed black line: Expected performance with an ideal wind direction sensor, calculated using
equation (3.5).
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Figure 3.14: Theoretical and experimental success rate of the casting algorithm.
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Figure 3.15: Theoretical and experimental performance of the surge-spiral algorithm. Green
stars: Real-robot experiments (20 runs each). Blue boxes and red crosses: Box-plot of the simu-
lation results (50 runs each). The box shows the lower/upper quartile and the red line denotes the
median. Red crosses stand for outliers. Gray shading: Theoretically derived distribution of the
distance overhead. Black line: Expected mean distance overhead, calculated from the distribution.

3.3.4 Performance of the Surge-Spiral Algorithm

3.3.4.1 Ideal Wind Direction Sensor

With an ideal wind direction sensor, the distance overhead of the surge-spiral is simply

do(dgap) = 1 (3.18)

Since the robot starts in the plume and moves straight upwind in this ideal plume, it never leaves
it. Hence, in contrast to the casting algorithm, the surge-spiral algorithm achieves optimal perfor-
mance under ideal conditions.

3.3.4.2 Noisy Wind Direction Sensor

With a noisy wind direction sensor, we again break the basic pattern of the algorithm into two
steps:

1. Move straight upwind until the plume is lost for a distance greater than dlost. Due to the
wind direction measurement error, the actual upwind angle is α1.

2. Move along an Archimedean spiral until the plume is found again. The wind direction
measurement here (α2) only serves to decide whether to start the spiral towards left or right.

The surge-spiral algorithm does not have any failure condition4. Under the ideal assumptions
taken here and the fact that the spiral increases, the robot will eventually reacquire the plume. The

4In the simulation and real robot experiments, the only condition for failure was when the robot touched the arena
wall. This, however, was very unlikely even with the real robots and never happened.
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three distributions therefore are

dt = l+ rl(dgap,dlostbsin |α1|) (3.19)

du = lcosα1 + ry(dgap,dlostbsin |α1|) (3.20)

s = 1 (3.21)

where

l =
{

dlost if α1 < 0
w

sinα1
+dlost otherwise (3.22)

b =


−1 if α2 < α1 < 0
−1 if 0 < α1 < α2
1 otherwise

(3.23)

rl(dgap,x) and ry(dgap,x) are the trajectory length resp. the upwind component of the spiraling
maneuver with spiral gap dgap and distance x from the plume. As these values are difficult to
calculate analytically, we numerically integrated over a spiral trajectory to find them. This is
much more precise than approximating the spiral with a circle and straightforward to implement.

Since sinα1 → 0 for small α1, it is clear that a good wind direction sensor will significantly
increase the upwind step length, and therewith significantly improve the performance of the algo-
rithm.

The rest of the calculation is exactly the same as introduced in Section 3.3.3.

3.3.4.3 Results

Figure 3.15 shows the distance overhead for the surge-spiral algorithm. Despite the high variance
of the simulation results, the overall match between simulation and theory is pretty good. Both
capture the drop in performance for small spiral gaps, and both predict a fairly constant perfor-
mance over a wide range of larger gap distances.

As opposed to the casting algorithm, the distribution generated by surge-spiral is almost ex-
ponential. While most runs yield a good distance overhead value, some runs are very bad. Indeed,
a number of outliers can be observed in the simulation and real-robot results (which are available
for dgap = 58 cm only).

For large dgap values, the theoretically derived distance overhead distribution becomes slightly
bumpy. This is a result of the discrete number of iterations that the algorithm performs. The
number of real-robot and simulation runs is too small to observe the same effect there.

3.3.5 Performance of the Surge-Cast Algorithm

3.3.5.1 Ideal Wind Direction Sensor

For the same reasons as for the surge-spiral algorithm, the distance overhead for the surge-cast
algorithm under ideal conditions is

do(dcast) = 1 (3.24)
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Figure 3.16: Theoretical and experimental performance of the surge-cast algorithm. Green stars:
Real-robot experiments (20 runs each). Blue boxes and red crosses: Box-plot of the simulation
results (50 runs each). The box shows the lower/upper quartile and the red line denotes the
median. Red crosses stand for outliers. Gray shading: Theoretically derived distribution of the
distance overhead. Black line: Expected mean distance overhead, calculated from the distribution.

3.3.5.2 Noisy Wind Direction Sensor

Since surge-cast and surge-spiral only differ in their plume reacquisition strategy their equations
look very similar:

dt = l+ ct(α1,α2,dlost) (3.25)

du = lcosα1 + cu(α1,α2,dlost) (3.26)

s =
{

1 if dlost
sinα1
cosα2

< dcast

0 otherwise
(3.27)

Instead of the spiraling maneuver, however, the surge-cast algorithm casts to reacquire the plume.
The corresponding equations for ct and cu are:

ct = dlost
sin |α1|
cosα2

+b (3.28)

cu = dlost(cosα1 + sin |α1| tanα2) (3.29)

b =


dcast if α2 < α1 < 0
dcast if 0 < α1 < α2
0 otherwise

(3.30)

Note also that the surge-cast algorithm fails if the robot does not find the plume by casting back-
ward and forward.

The rest of the calculation is again the same as introduced in Section 3.3.3.
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Figure 3.17: Theoretical and experimental success rate of the surge-cast algorithm.

3.3.5.3 Results

The distance overhead and the success rate of the surge-cast algorithm are plotted in Figure 3.16
resp. Figure 3.17.

The match between simulation and theory is excellent for both the distance overhead and the
success rate. The exponential distribution predicted by the theory is visible on the outliers of the
simulation results.

The real-robot results are only slightly worse, but follow the same trends. While a few very
good runs can be observed with the real robots, their performance does not exactly follow an
exponential law. Closer inspection of the individual runs suggests that this is mainly due to the
odometry bias which makes the robot turn slowly when it intends to go straight. Such errors do
not have a big impact on a bad run, but makes a perfect run very unlikely.

For both the surge-cast and the surge-spiral algorithms, the theoretical prediction with an ideal
wind sensor does not provide an accurate model of the performance of upwind surge algorithms.
At least in laminar flow, these algorithms highly depend on the wind direction sensor and its
accuracy.

3.4 Results in Non-Laminar Flow and with Obstacles

All experiments up to this point were carried out in laminar flow. Many real-world applications,
however, will have to deal with obstacles and turbulence, and it is important to know if the algo-
rithms are able to deal with such difficulties. In this section, we therefore report on a number of
real-robot experiments carried out with different obstacles, and discuss our observations.
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Figure 3.18: Sketch of the experimental setup with obstacles A, B, and C. Note that only one of
the three obstacles was placed at a time.

(a) (b)

Figure 3.19: (a) Wind tunnel with hexagonal obstacle at position B. (b) V-shape obstacle (C).

3.4.1 Experimental Setup

The experimental setup was similar to the one used in our previous experiments without obstacles
(see Section 3.2.1). The experiments were thereby carried out in the wind tunnel with a wind flow
of roughly 1 m/s speed. This wind flow is laminar unless obstacles are placed.

We considered the three experimental configurations shown in Figure 3.18. Configuration (A)
has a tall obstacle (changing wind flow) placed at 4 m downwind from the source. The shape of
this obstacle can be described as a hexagon with an irregular border. Configuration (B) has the
same obstacle, but placed 10 m downwind from the source. As the wind flow behind these ob-
stacles was turbulent, the plume got very diluted in these areas. The robot both had difficulties
measuring the wind direction and discriminating between plume and fresh air behind the obsta-
cles. Configuration (C) consists of a V-shaped surface obstacle (leaving the wind flow unchanged)
placed at 9 m downwind. Pictures of these obstacles are shown in Figure 3.19, and the resulting
plume in Figure 3.20.
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Figure 3.20: From top to bottom: Plume with obstacles at positions A, B and C. Note that con-
centration levels are relative – only the shape of the plumes can be compared. The plume maps
were recorded by systematically scanning the wind tunnel (traversing system) with a MiCS-5521
sensor.

3.4.2 Algorithms

The plume tracking strategy used here is based on the surge-spiral algorithm. To deal with obsta-
cles, we enhanced it with either a Braitenberg [81] obstacle avoidance or wall following algorithm
using the 9 infrared sensors of the Khepera III robot. The left and right wheel speeds, sl and sr,
are thereby calculated as a linear combination of the raw infrared proximity sensor values, vi, i. e.,

sl = ol +
9

∑
i=1

wivi and sr = or−
9

∑
i=1

wivi (3.31)

and the weights, wi, and bias speeds, ol and or, are chosen such that the resulting behavior is either
obstacle avoidance or wall following.

With the obstacle avoidance algorithm, both the surge-spiral algorithm and the Braitenberg
obstacle avoidance algorithm are running in parallel, and the output of the surge-spiral algorithm
is simply the bias speed for the Braitenberg algorithm. As long as the robot is far away from any
obstacle, the Braitenberg weights sum up to zero and leave the surge-spiral algorithm unmodified.
When the robot is close to an obstacle, obstacle avoidance dominates surge-spiral.

With wall following, the surge-spiral algorithm is the only active algorithm in open space.
When the robot approaches an obstacle, it switches to wall following and sticks to this mode
until it has reached the other side of the obstacle. To find out when this has happened, the robot
measures the wind direction in regular intervals and switches back to surge-spiral as soon as the
wind is blowing towards the obstacle.

To deal with turbulence and dilute plume, the sensory input was processed as follows:

1. If the wind direction sensor returned a low confidence value for a measurement, that mea-
surement was repeated and the confidence threshold decreased.
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Figure 3.21: Obstacle configurations used in the experiments. Note that only one obstacle was
placed at a time. Gray lines connect configurations for which the results can be directly compared.

2. The variable odor threshold, ti, was dynamically adjusted using the following additive-
increase-multiplicative-decrease scheme:

ti+1 = bi+1 +δ (3.32)

bi+1 =
{

bi +α if ci > bi

bi(1−β )+ ciβ otherwise
(3.33)

with α = 0.01 (experimentally found to be near-optimal) and varying β and δ . While β

defines how fast the algorithm adapts to baseline changes, δ affects the width of the plume,
as perceived by the robot. ci denotes the raw measurement, while bi stands for the variable
baseline.

As with our previous experiments, we only consider plume traversal and intentionally omit
plume finding (i. e., randomized or systematic search until the plume is found) and source declara-
tion (i. e., declaring that the source is in close vicinity), to prevent those two parts from interfering
in the results. Hence, the robot starts in the plume, and source declaration is done by a supervisor
(ideal source declaration). Experiments are considered successful when the robot has come in
physical vicinity of the source, and unsuccessful if it bumps into an arena boundary.

3.4.3 Results

We run experiments for the 6 different configurations listed in Figure 3.21. That same figure also
indicates which configurations can be compared against each other. In the following paragraphs,
we compare these configurations and discuss their results.

3.4.3.1 No Obstacle vs. Obstacles A and B

In the first series of runs, we compared the impact of obstacle A and B on the performance. 10
runs each were carried out for different values of β and δ , and the results plotted in Figure 3.22.
The Braitenberg obstacle avoidance algorithm was used in all runs. In spite of the small number
of runs carried out for each case, the results clearly show that the distance overhead increases
and the success rate decreases when obstacles are present. Furthermore, there is evidence that the
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Figure 3.22: Comparison of runs with and without obstacles. The blue bars show the distance
overhead (lower is better) and the gray bars indicate the success rate. The blue horizontal line is
the mean for the group with the 95 % confidence interval.

results are slightly worse in the case of obstacle A, which confirms our intuition that turbulent flow
induces a performance penalty.

Even though the bars seem to suggest that higher β values (i. e., faster threshold adaptation)
yield lower distance overheads, there is statistically not enough evidence to support this statement.

3.4.3.2 Obstacle A on Plume Boundary vs. in Center

Figure 3.23 shows the impact of moving obstacle A from the plume boundary to the plume center,
with the effect that the plume splits into two almost equal lobes behind the obstacle. It turns out
that this has a negative effect on the distance overhead, while keeping the success rates at similar
levels.

3.4.3.3 Obstacle Avoidance vs. Wall Following

Finally, we carried out experiments with the wall following algorithm. As shown in Figure 3.24,
the success rate jumps to one, at the expense of a slightly higher distance overhead.

3.4.3.4 Surface Obstacles

Braitenberg obstacle avoidance can perform poorly in case of non-convex obstacles. As sketched
in Figure 3.25, the obstacle avoidance version of our algorithm is likely to get trapped in obstacle
C, while wall following is able to deal with it.

We carried out one set of 10 runs for β = 0.4 and δ = 10 with both variants of the algorithm.
While none of the obstacle avoidance runs succeeded, all wall following runs were successful with
a mean distance overhead of 1.59.
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Figure 3.23: Effect of the position of the obstacle within the plume.
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Figure 3.25: Wall following vs. Braitenberg obstacle avoidance with non-convex obstacles.
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3.4.4 Discussion

Three main conclusions can be drawn from the experiments.
First, obstacles induce a penalty both because of the path constraints and the turbulence down-

wind the obstacle. The latter causes the plume to get diluted and become more peaky, but also
affects the wind direction sensor accuracy which we have previously shown to have a big im-
pact on the performance. As turbulent flow is difficult to simulate with computer programs [7],
real-robot experiments seem to be more suitable to study the effect of obstacles.

Second, both Braitenberg obstacle avoidance and wall following are able to deal with convex
obstacles. Simple obstacle avoidance yielded a slightly better distance overhead in our experi-
ments, but wall following scored with high success rates. For non-convex obstacles, however,
wall-following is the preferred technique.

Finally, the surge-spiral algorithm seems to be a good candidate algorithm for plume traver-
sal in complex environments. A few initial runs (not systematically recorded) with the casting
algorithm did not provide satisfactory results in our scenarios.

To our knowledge, this is the first systematic real-robot study on the performance of plume
traversing algorithms in environments with obstacles. It is clear that the scenarios chosen here are
not representative for the vast amount of potential real-world scenarios, and it may be too early to
generalize the results presented here.

The effect of obstacles on odor source localization definitely needs to be studied further. Po-
tential future research directions include studies with more than one obstacle, moving obstacles,
or obstacles in immediate proximity of the source.

3.5 Multi-Robot Experiments without Collaboration

We have so far shown a number of results obtained for a single robot tracking a plume up to
the source with three different algorithms. In this section, we are studying the same algorithms
with multiple non-cooperating robots. In particular, we compare the performance difference when
moving from a single-robot to a homogeneous multi-robot system with 2 or 5 robots. Our perfor-
mance metric is again the distance overhead (traveled distance dt divided by upwind distance du).
As we require only one robot to reach the odor source, we use the distance overhead of the first
robot to reach the source as the performance of the robotic team.

As sketched in Figure 3.26, the difference in distance overhead between single-robot (A) and
non-cooperating multi-robot systems (C) consists of two components. First, randomness due to the
noise in the system boosts the performance of the system (Figure 3.26 (1)). This performance gain
can be calculated by using the distribution of the distance overhead of single-robot experiments,
and would be achieved if the robots were not interacting with each other (B). Second, physical
interference among the robots result in a loss in performance (Figure 3.26 (2)), which we quantify
by running simulations in a realistic robotic simulator [72]. Cooperation among robots (D, not
discussed in this section) would again result in a performance gain.

3.5.1 Expected Performance of Multi-Robot Experiments

Assume a performance value q that can be associated with each experimental run. In our case, this
metric is the distance overhead (traveled distance dt divided by upwind distance du) of the first
robot that reaches the source. Hence, a small q value stands for a good performance, with q = 1
being the optimum.
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Figure 3.26: Distance overhead of single-robot vs. multi-robot systems. (1) Performance gain due
to randomness (mathematically derived in Section 3.5.1). (2) Performance loss due to physical
interference among robots (simulated with a robotic simulator). (3) Performance gained with
collaboration among robots (not discussed in this section).
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Figure 3.27: Q1: Experimentally measured distribution of the distance overhead with a single
robot. Q2 and Q5: The expected distributions for 2 resp. 5 robots, based on the assumption that
the robots do not physically interfere with each other. The triangles on top of the diagram indicate
the mean values of the respective distributions.

The distance overhead of an experiment with a single-robot algorithm (with a fixed set of
parameters) can be expressed as a distribution Q1, which can be approximated by performing a
large number of runs, for instance. Examples of such distributions estimated with 200 runs are
shown in Figure 3.27.

If two independent robots are going for the same source, their performances qa and qb are
random samples drawn from Q1. Clearly, the smaller of these two numbers (corresponding to the
faster robot) will set the overall performance of the team,

qab = min(qa,qb) (3.34)

Hence, the performance distribution of a system with two independent robots is the distribution of
qab, and can be expressed as

Q2(q) =
1

cQ

∫∫
[min(qa,qb) = q] Q1(qa)Q1(qb) dqadqb (3.35)

with cQ =
∫∫

Q1(qa)Q1(qb) dqadqb (3.36)

where [·] stands for the Iverson bracket. Generalizing this for N robots is straightforward.
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3.5.1.1 Calculating QN

Closed-form expressions for QN only exist for a few well-known distributions. If Q1 is expo-
nentially distributed with mean 1

λ
, for instance, then QN is exponentially distributed with mean

1
Nλ

.
The algorithms used in this section yield complicated distributions, however, and an approx-

imation by an exponential distribution would be very rough for the surge-spiral and surge-cast
algorithms, and not justifiable for the casting algorithm. We therefore calculated the distributions
for multiple robots numerically, by randomly sampling from the distribution Q1 (Monte-Carlo
simulation). Formally, we estimated the distribution QN with 100000 samples of the form

min(q1,q2, . . . ,qN) (3.37)

where q1, q2, . . . , qN are randomly selected performance samples of the single-robot runs. Dis-
tributions obtained in this way for N = 2 and N = 5 robots executing the casting algorithm are
shown in Figure 3.27. On that figure, it can be observed how the distribution and its mean value
shift towards the left (lower distance overhead) as the number of robots increases.

3.5.2 Experiments

For all three algorithms, we run experiments with 9 different parameters (upwind angle β for
casting, spiral gap dgap for surge-spiral, and cast distance dcast for surge-cast), each with 1, 2, or 5
robots. The experiments were run in the Webots simulation environment presented in Section 2.2,
and the robots were therefore physically interacting with each other, corresponding to case C in
Figure 3.26. For β = 25 ◦, dgap = 22 cm and dcast = 34 cm, we performed 200 independent runs
and calculated the ideal performance as described in Section 3.5.1. For all other configurations,
50 runs were carried out.

In each run, the robots were released in the odor at fixed positions (evenly spaced) between
14.5 m and 16 m downwind from the source. If one robot reached the odor source, the run was
stopped and considered successful. During the run, the trajectory, the measured odor concentration
and the measured wind direction were recorded for each simulation step. Distance and upwind
distance were derived from the trajectory.

The forward speed of the robot (on straight lines) was 10.6 cm/s and therefore same as with
the real-robot experiments in the wind tunnel. The plume threshold was set to c = 100.

3.5.3 Casting

The results for the casting algorithm are presented in Figure 3.28. The differences between the
single-robot and the multi-robot experiments are very small and statistically not significant for
most configurations. However, as a general trend, multiple robots seem to yield slightly better
performance for upwind angles β > 20 ◦, and worse performance otherwise.

As Figure 3.28 (b) reveals, even the ideal performance (for robots that are not physically
interfering) is not much better than the single-robot performance. Indeed, single-robot experiments
with the casting algorithm yield a compact — almost normal — performance distribution with a
small variance, and the resulting ”left shift“ of the distribution for multiple robots is small.

A noticeable gain can be observed for the success rate, however. For small angles, where the
success rate with a single robot is small, a team of robots can achieve very high success rates. This
robustness is an advantage often cited in the context of multi-robot systems. Surprisingly, physical
interference seems not to have a big influence here. As shown in Table 3.3, the actual success rates

DISTRIBUTED ODOR SOURCE LOCALIZATION



70 3.5 Multi-Robot Experiments without Collaboration

5° 10° 15° 20° 25° 30° 35° 40° 45°
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Casting with varying upwind angle

Upwind angle (β)

T
ra

ve
le

d 
di

st
an

ce
 d

t / 
up

w
in

d 
di

st
an

ce
 d

u [m
/m

]

66
%

78
%

98
%

96
%

10
0%

10
0%

10
0%

10
0%

10
0%

76
%

96
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

98
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

Success rates:

Number of robots:
1 robot
2 robots
5 robots

(a)

1 2 5
1

1.05

1.1

1.15

1.2

1.25

1.3
Casting: β=25°

Robots

T
ra

ve
le

d 
di

st
an

ce
 d

t / 
up

w
in

d 
di

st
an

ce
 d

u [m
/m

]

(b)

Figure 3.28: (a) Simulation results obtained with the casting algorithm. The error bars indicate
the 95 % confidence interval for the mean. (b) Close-up for β = 25 ◦. The thin arrows indicate
the intrinsic performance gain by passing from a single-robot to a multi-robot system (Figure 3.26
(1)), while the thick arrows indicate the performance loss due to physical interaction between the
robots (Figure 3.26 (2)).

Table 3.3: Comparison between the actual and the expected success rate obtained with the casting
algorithm.

1 robot 2 robots 5 robots
Algorithm actual actual expected actual expected
Casting, β = 5 ◦ 0.66 0.76 0.884 1.0 0.995
Casting, β = 10 ◦ 0.78 0.96 0.952 1.0 0.999

obtained in the multi-robot experiments are close to the expected success rates calculated based
on the success rate of the single-robot runs.

3.5.4 Surge-Spiral

The picture for the surge-spiral algorithm (see Figure 3.29) looks pretty different. As the per-
formance distribution of single-robot runs resembles an exponential distribution, its mean value
decreases as 1

N with increasing numbers N of robots. Hence, large performance gains are expected.
For small spiral gaps, no performance gain is noticed in the simulation results. For large gaps,

however, the difference between the single-robot and the multi-robot runs are significant. Even
though the theoretical model would expect an even larger difference, the multi-robot runs were
clearly faster than the single-robot runs and achieved similarly good results as the single-robot
runs with small spiral gaps. The reason for this is that a spiraling robot spends enough time aside
the plume, such that other robots can safely overtake. This could be interpreted as an indirect and
implicit coordination scheme (without communication), whereby robots losing the plume try to
make room for other robots in the plume.
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Figure 3.29: (a) Simulation results obtained with the surge-spiral algorithm. The error bars
indicate the 95 % confidence interval for the mean. (b) Close-up for dgap = 22 cm. The thin
arrows indicate the intrinsic performance gain by passing from a single-robot to a multi-robot
system (Figure 3.26 (1)), while the thick arrows indicate the performance loss due to physical
interaction between the robots (Figure 3.26 (2)).
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Figure 3.30: (a) Simulation results obtained with the surge-cast algorithm. The error bars indi-
cate the 95 % confidence interval for the mean. (b) Close-up for dcast = 34 cm. The thin arrows
indicate the intrinsic performance gain by passing from a single-robot to a multi-robot system
(Figure 3.26 (1)), while the thick arrows indicate the performance loss due to physical interaction
between the robots (Figure 3.26 (2)).
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3.5.5 Surge-Cast

The results for the surge-cast algorithm are similar, as Figure 3.30 reveals: the longer the cast
distance, the more performance is gained by using multiple robots. This has to be taken with a
grain of salt, though, since longer cast distances yield worse performance in the single-robot case
and are therefore not desired anyway. Hence, in well-configured systems with near-optimal cast
distances (here 27 –34 cm), no performance gains are visible.

Contrary to the casting experiments, using multiple robots does not increase the robustness of
the algorithm here. In some cases, the success rate even got worse. The surge-cast algorithm in
its present form is clearly not robust with respect to physical collisions. Especially during plume
reacquisition, a robot blocking the way at the plume boundary can cause another robot to lose the
plume completely. This could certainly be improved by adaptively increasing the cast distance
until the plume is found.

3.6 Thoughts on Collaboration

The multi-robot experiments without collaboration have shown that the use of multiple robots for
plume tracking increases the performance slightly, but not as much as expected by theoretical
considerations. The main reason for this is physical interference among collaborating robots. In
particular, uncoordinated teams of robots have troubles overtaking each other when moving in the
plume. Whenever two robots are coming close to each other, the obstacle avoidance mechanism
overrides plume tracking and deviates the robot from its track. For upwind surge, for instance, this
means that the robot will almost certainly lose the plume and switch to plume reacquisition.

The underlying problem here is that none of the three algorithms takes the effective robot
movement into account. They generate their trajectories with a state machine that is entirely based
on odor concentration and wind direction, and assume that the robot moves as dictated by the
current state. Anything along this path — such as obstacles, other robots or simply uneven terrain
— is a disturbance when following the plume up to its source. None of the algorithms can cope
with such disturbances in an efficient manner, as the results of the non-collaborative multi-robot
experiments showed.

Hence, for pure plume traversal (without initial plume search5), using multiple robots in a
non-collaborative fashion is not worth the effort.

The question that naturally arises at this point is whether collaboration could help. But adding
collaboration to these algorithms is a double-edged sword. From a theoretical perspective, col-
laboration should at least yield the same performance as the non-collaborative versions, as more
information (position, concentration and wind direction measurements of other robots) is available
to the algorithm. However, a reaction based on such information is again a disturbance to the algo-
rithm, which the algorithms are inherently not good at coping with. Hence, without fundamentally
changing the algorithms, collaboration is likely to not provide satisfying performance. The results
of a student project (not reported in this thesis) underlined this hypothesis, and prevented us from
digging any further into this direction.

Considering that these algorithms are inspired by the behavior of moths, this is actually not
surprising. Moths, such as many other insects, are tracking plumes in a competitive manner, and
not in a collaborative one. Plume tracking is heavily used for food scavenging and mating, both
of which are highly competitive activities that are directly linked with the evolutionary success
of an individual. Hence, individuals would certainly not share information that may favor other

5For search or coverage in general, a number of multi-robot algorithms available, and it is well known that the
performance can be greatly enhanced by using multiple robots.

DISTRIBUTED ODOR SOURCE LOCALIZATION



3. Bio-Inspired Algorithms 73

Table 3.4: High-level comparison of the three bio-inspired algorithms.

Casting Surge-spiral Surge-cast
Speed – + ++
Robustness + / – (1) ++ +
With obstacles – + +
In turbulent flow – (2) + (3) – (2)

Without wind – (2) + (3) – (2)

Kinematic constraints – (4) + – (4)

Multi-robot capable – – –
CPU / memory requirements low low low
Self-localization requirements low low low

(1) Robust configurations are inherently slow.
(2) The algorithm does not work at all in these conditions.
(3) The algorithm (or a close variant) works, even if its performance suffers.
(4) The algorithm includes sharp turns.

individuals. This is not true for animals living in societies, who, for example, actively help each
other for food scavenging. But as odors move quickly in the air, fast communication mechanisms,
such as audible signals or visual cues, among individuals would be necessary to take advantage
of the information acquired by other individuals before this information becomes irrelevant. We
are not aware of any such mechanisms with insects. Hence, low-level plume tracking is still done
individually, even if higher level tasks (such as food scavenging) are performed together.

This obviously does not mean that it is impossible to come up with a simple multi-robot plume
tracking algorithm. We in fact show that this is possible later in Chapter 5. The collaborative
plume tracking algorithm introduced there is not bio-inspired, but based on standard engineering
principles.

3.7 Summary and Conclusion

Altogether, the experiments presented in this chapter provide a good overall picture of these three
bio-inspired algorithms and demonstrate the interplay of the three underlying behaviors (casting,
spiraling, and upwind surge) observed in nature.

The main conclusions over all experiments are summarized in Table 3.4.
Pure casting is inefficient for large upwind angles, and not very robust for small upwind angles.

In addition, casting relies on fairly accurate wind direction measurements and would not work
in environment without a main wind flow, for instance. The worst property of this algorithm
however is that if anything goes wrong, the algorithm loses the plume and fails completely. Hence,
combining the algorithm with other subsystems (e. g., obstacle avoidance) which take over control
of the robot for short times is not possible.

Pure casting is an incomplete algorithm. Nevertheless, this was one of the most popular odor
source localization strategies in the scientific literature prior to 2005. Many variants have been
studied and sometimes referred to as moth-inspired [5] [20]. Moths, however, as other animals,
do not rely on pure casting for airborne plume tracking, but on a combination of casting, upwind
surge and spiraling [51].

Upwind surge strategies (surge-spiral and surge-cast) have a big speed advantage, especially
if the wind direction can be determined accurately. However, they need to be combined with a
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plume reacquisition strategy. Using a local search strategy (e. g., spiraling) to reacquire the plume
yields very robust algorithms. Casting for plume reacquisition is faster if reliable wind direction
information is available, but less robust. Additional robustness could be added by increasing the
cast distance until the plume is found, instead of giving up after one back and forth sweep, or by
switching to spiraling whenever casting fails.

As compared to the other two algorithms, the surge-spiral algorithm keeps a high success
rate even under difficult conditions. Instead, the distance overhead increases. This allows the
algorithm to coexist with other controllers in the same system. Whatever disturbance might occur,
the algorithm will do its best to move towards the source.

Spiraling is also the only strategy (among spiraling, casting and upwind surge) that can be
used in environments without a main wind flow, or on robots that do not have any wind direction
sensor on board. The distance overhead would suffer significantly, of course, but the strategy still
works.

Among the three algorithms tested in this chapter, the surge-spiral algorithm is therefore the
preferred strategy.
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4 Probabilistic Algorithms

In 2007, Vergassola et al. published a paper about infotaxis [30], an odor source localization algo-
rithm based on probability and information theory. This was the first paper to apply probabilistic
search to odor sources. Infotaxis is a rigorous application of Bayes inference, whereby a robot
keeps a probability distribution (belief) for the location of the source. Based on a plume model,
this probability distribution is updated each time the robot makes a new odor concentration mea-
surement. Using this probability distribution, the robot decides upon its best next move based on a
minimum entropy criterion. In other words, the expected entropy decrease of the probability distri-
bution is calculated for each possible move, and the “most promising” move is chosen. The paper
shows simulation results of a robot (modeled as a point) moving in a lattice-type environment.

The underlying concepts of infotaxis — probabilistic fusion of information, and probabilistic
decision taking — was known for a long time in mobile robotics [82] [83], and applied to a number
of tasks, including self-localization, SLAM and, more rarely, target localization (search) [84].
Hence, infotaxis can be seen as one particular algorithm within the framework of probabilistic
search.

This chapter discusses odor source localization algorithms within this probabilistic search
framework, and is structured as follows: we start by introducing a general mathematical descrip-
tion of probabilistic odor source localization. Then, we report on results carried out with a point
simulator to compare the performance between single-robot and multi-robot systems. In Sec-
tion 4.3, we demonstrate on the example of a simplified train station scenario how probabilistic
odor source localization algorithms could be used in more complex environments, and applied
to static nodes and mobile robots at the same time. In Section 4.4, we describe a lightweight
distributed implementation of the same probabilistic model, and discuss real-robot as well as sim-
ulation results obtained with this algorithm.

4.1 General Model

4.1.1 The Basic Model

With probabilistic odor source localization, the position of the source is modeled as a probability
distribution1 S. In the case of a 3D environment with one point source of unknown intensity sr,
this distribution can be written as

P(S = (sx,sy,sz,sr)) (4.1)

We call the tuple (sx,sy,sz,sr) the state of the source.
In addition, we need a plume propagation model. Such a model tells us the probability of

observing a concentration c at a location (x,y,z), given that the source is at (sx,sy,sz) and has an

1One could argue that this distribution is an estimate of the source location (a point in space) and should therefore
be written Ŝ. We stick to the notation S because we see it as a belief distribution for the source location. S is thereby the
real belief (given the observations), and not an estimate of it.
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intensity sr. Formally, this can be written as

P(O = (x,y,z,c)|S = (sx,sy,sz,sr)) = f (sx,sy,sz,sr,x,y,z,c) (4.2)

With this, we assume that the orientation of the robot does not have any influence on the measure-
ment c. If it does, these parameters can of course be added to the model.

The algorithm then consists of an update rule which updates S whenever a new observation is
made, and a decision rule which tells the robot where to go next.

4.1.1.1 Update

The update step consists of filtering a new observation Ok = (xk,yk,zk,ck) into the current source
state probability, Sk−1, using recursive Bayesian estimation. In the general case

P(Sk|Ok, . . . ,O0) = αP(Ok|Sk)P(Sk|Ok−1, . . . ,O0) (4.3)

= αP(Ok|Sk)
∫

P(Sk|Sk−1)P(Sk−1|Ok−1, . . . ,O0)dSk−1 (4.4)

Note that α is just a normalization factor. The expression P(Ok|Sk) stands for the plume model,
while P(Sk|Sk−1) is a model for the motion of the source, or its change in intensity. We will briefly
discuss moving sources in Section 4.1.2.7, but all our experiments were carried out with a static
source, for which the equation simplifies as follows:

P(Sk|Ok, . . . ,O0) = αP(Ok|Sk)P(Sk−1|Ok−1, . . . ,O0) (4.5)

Within the recursive Bayesian estimation terminology, a recursion always consists of a prediction
and an update step. For static sources, the prediction step simply falls away resp. becomes trivial,
and only the update step is left.

4.1.1.2 Decision

In the decision step, the robot calculates the expected information gain for each potential next
move, or, more precisely, each potential next observation.

The amount of information in the probability distribution S can be quantified by its information
entropy

e(S) =−
∫

P(S = (sx,sy,sz,sr)) · ln(P(S = (sx,sy,sz,sr)))d(sx,sy,sz,sr) (4.6)

Initially, when we have little clue about the location of the source, P(S) is almost uniform and
this entropy therefore large. The more information we obtain through our observations, the more
the probability mass concentrates on a specific region, and thereby reduces e(S), as depicted in
Figure 4.1. If we know the exact state of the source, the probability distribution reduces to a Dirac
function, with an entropy of e(S) = 0.

Assume now that we are at time step k, and the robot can execute one action out of a discrete
set of potential actions,

Ak,1,Ak,2, . . . (4.7)

Such actions may have been proposed by a path planner, for example. If the robot choses to per-
form action Ak,1, this yields a distribution of potential observations the robot will make during
or after this action. Action Ak,1 might take the robot to some location (x0,y0,z0), for instance,
where it will take a concentration measurement c0 (e. g., a high odor concentration) and thereby
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(a) e large (b) e small (c) e = 0

Figure 4.1: Graphical representation of the entropy of a probability distribution. (a) A uniform
distribution (over a finite interval) has a high entropy. (b) The more the probability mass is con-
centrated in a small area, the lower the entropy. (c) If the distribution is a Dirac function, its
entropy is 0.

produce the observation Ok+1,Ak,1,0 = (x0,y0,z0,c0). At the same location, a robot may also mea-
sure a concentration c1 (e. g., a low odor concentration), yielding a second potential observation
Ok+1,Ak,1,1 = (x0,y0,z0,c1). When considering uncertainty in the movement of the robot, action
Ak,1 may even take the robot to different locations. For an illustration of this, check out Figure 4.2.

When taking action Ak,i, we will therefore make one of a whole set of observations,

Ok+1,Ak,i,0,Ok+1,Ak,i,1, . . . (4.8)

Each of these observations occurs with some probability. Regarding the location of the robot,
the motion model of the robot should be able to provide us with a probability value for each
potential location. This is highly application- and platform-dependent, and in many cases using
one deterministic target location per action might be a good approximation.

The probability of measuring a certain concentration c at a location (x,y,z) can be estimated
using the plume model and the current belief of the source state:

P(C = c|x,y,z) =
∫

P(C = c|S,x,y,z)P(S)dS (4.9)

We now have a discrete set of potential actions, and for each action a discrete set of potential
observations, each of which is assigned a probability of actually happening if the robot decides to
take the corresponding action (P(O|A)). To calculate the expected entropy2 of an action Ak,i, the
decision algorithm calculates the entropy for each potential observation of that action, and weights
the results with the probability of these observations. Formally,

eA(Ak,i) = ∑
n

eO(Ok+1,Ak,i,n)P(Ok+1,Ak,i,n|Ak,i) (4.10)

where eA(A) stands for the expected entropy if action A is chosen, and eO(O) the expected entropy
if O is observed. Calculating the latter is pretty straightforward: we first apply an update step for
this potential observation:

P(Sk+1,Ak,i,n|Ok+1,Ak,i,n,Ok, . . . ,O0) = αP(Ok+1,Ak,i,n|Sk+1,Ak,i,n)P(Sk|Ok, . . . ,O0) (4.11)

which is essentially a prediction for the next step, under the condition that the corresponding
observation is made. Then, we calculate the entropy of the resulting belief of the source state.
Formally,

eO(Ok+1,Ak,i,n) = e(Sk+1,Ak,i,n|Ok+1,Ak,i,n,Ok, . . . ,O0) (4.12)

2The expected entropy decrease is simply the difference between the current entropy and the expected new entropy.
Maximizing the expected entropy decrease is therefore equivalent to minimizing the expected entropy.
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Action Ak,1

(x0,y0,z0, low concentration) P = 0.3 e = 4.3
(x0,y0,z0,high concentration) P = 0.1 e = 3.3
(x1,y1,z1, low concentration) P = 0.4 e = 4.5
(x1,y1,z1,high concentration) P = 0.2 e = 3.5
Weighted sum eA(Ak,1) = 4.12

Action Ak,2

(x2,y2,z2, low concentration) P = 0.2 e = 4.4
(x2,y2,z2,high concentration) P = 0.1 e = 3.9
(x3,y3,z3, low concentration) P = 0.3 e = 4.3
(x3,y3,z3,high concentration) P = 0.2 e = 4.0
(x4,y4,z4, low concentration) P = 0.1 e = 4.5
(x4,y4,z4,high concentration) P = 0.1 e = 4.1
Weighted sum eA(Ak,2) = 4.20

Figure 4.2: Decision step example with two potential actions with 4 resp. 6 potential observations.
For the sake of simplicity, the sensor only distinguishes between low and high odor concentration.
The probability values are used as weights for the weighted sum. In this example, action Ak,1
would be chosen, as it yields a lower expected entropy value.

An illustration of this procedure is depicted in Figure 4.2. All that remains to be done is to select
the action yielding the minimum expected entropy, and execute it.

4.1.2 Extensions to the Model

4.1.2.1 Initialization and Human Input

When robots are deployed on a site to track down an odor source, they need to be given an initial
guess of the source location, which is used as probabilistic prior the first time the update step
is applied, i. e., S0. Usually, there is some information around already. For example, people may
know in which building, room, or field the source is located. In this case, the prior can be initialized
to be uniform over the search area.

In some cases, people have more knowledge. They may have a prior belief about the location
or intensity of the source based on experience or other evidence, for instance. All such information
can be integrated into the prior, and will help the robot to take better decisions especially at the
beginning, when it has not got many observations on its own. When looking for a source in a
building with several rooms, for example, the algorithm would automatically give preference to
rooms with a high prior value, as the source is more likely to be located there.

Human input can even be integrated while the robot is searching. To do that, such input is inte-
grated into the model as an observation. Unless this observation is a concentration measurement,
its probabilistic description will be different from the observations the robot makes. Nevertheless,
the update rule (equation (4.5)) is the same.

4.1.2.2 Path Planning and Obstacles

Combining this model with a path planner is straightforward. A path planner algorithm [83] will
propose feasible trajectories that the robot can take from its current location, usually based on
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(a) (b)

Figure 4.3: (a) Example of a path planner suggesting 6 different routes to navigate around an
obstacle. The probabilistic odor source localization algorithm will analyze each path and choose
the one which minimizes the expected entropy, or the best cost-to-entropy-reduction ratio. (b)
Example of a scenario with one additional known source. This source is contaminating the area
and must therefore be taken into account when localizing the unknown source.

a map, or information about the environment collected with other sensors. The decision step
algorithm will simply evaluate all these trajectories and pick the best. If the path planner assigns
costs to these paths, it can be compared with the entropy to select the best trade-off.

Dealing with obstacles, difficult terrain or strategic considerations are therefore nicely dele-
gated to the path planner, or algorithms providing input to the path planner. Indeed, these are all
issues related to standard robot navigation, and not odor source localization in particular. Hence,
probabilistic odor source localization can be integrated very nicely into existing mobile robotic
systems.

4.1.2.3 Multi-Step-Ahead Calculation

A good path planner provides a tree of feasible trajectories that extend to more than one step (e. g.,
iteration of the control loop) into the future. In the example in Figure 4.3, the path planner came
up with 6 different trajectories, whereby two trajectories each share a common first part (A1, B1,
and C1).

Instead of analyzing the next step only, the decision step algorithm can evaluate the whole
tree. At each step (depth of the tree), the algorithm must thereby iterate over all possible actions
and observations. As shown in Figure 4.4, the evaluation tree has one observation layer for each
action layer. The entropy is only calculated at tree leafs, and backtracked to the current position
as follows:

. At tree leafs (which are always observations), the entropy is calculated using equation (4.6).

. Entropy values coming from different observations are averaged according to the probability
with which observations are made. Indeed, the robot cannot influence the observation he
will make at a particular position, and therefore calculates the expected entropy at this node.

. For entropy values coming from different actions, only the minimum entropy value is kept.
As the robot can deliberately choose the action, it will select the one which minimizes the
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Figure 4.4: Evaluation tree when calculating multiple steps ahead of the current position. Note
that branches marked with “. . . ” are omitted for clarity — the algorithm obviously has to evaluate
all branches.

entropy. The minimization at the root (current position) corresponds to the decision.

Note that there is a direct relationship with the well-known min-max algorithm for taking de-
cisions in strategic games. The path planner tree defines the set of actions a player can take. The
“opponent” is the observation, and since observations are not evil, the weighted average is calcu-
lated instead of the maximum. The entropy function at tree leafs corresponds to the evaluation
function in a strategic game.

Just as with strategic games, the evaluation complexity grows exponentially with the number
of steps that are calculated ahead of the current position. It is therefore impractical to calculate
more than a few steps ahead.

4.1.2.4 Multiple Robots, or Multiple Sensors

To integrate the observations of multiple sensors (whether they are on a robot or not), it is enough
to apply the update step once for each observation. Sensors can thereby have different sampling
intervals (regular or irregular), different sensitivity ranges and even different noise distributions.

Things are a bit more complicated with the decision step, when multiple robots are supposed to
take decisions in an optimal fashion. Since robots are moving in the same space, the observations
they will make are dependent, and their actions therefore as well. To illustrate this, have a look
at the example in Figure 4.5. Note that this example is constructed for the purpose of showing
the dependence, and not very realistic. Both robots shared all their observations and are therefore
taking their decisions based on the same source state probability distribution. For robot R1, the
best decision clearly is to explore the big area. The same holds for robot R2, if it takes its decision
independently. Since robot R1 will explore this area already, the information gain of a second
observation in this area will be minimal, however. If, on the other hand, both robots take their
decisions together (exploiting the dependence of their actions), robot R1 would explore the big
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Figure 4.5: Dependent vs. independent evaluation with multiple robots. “+” stands for a favor-
able decision for the robot (independent evaluation) or the team (dependent evaluation), while
“–” stands for an unfavorable decision. Note that the example shown here is constructed for the
purpose of showing the difference, and not representative for the majority of the decisions robots
take.

area, while robot R2 would explore the small area, and thereby minimize the entropy after taking
both observations into account.

Evaluating decisions in a completely dependent fashion grows exponentially with the number
of robots (or sensors) and is therefore impractical to use with more than a few robots. Note that
even if only one robot is moving, while all other sensors are static, the number of evaluations
still grows exponentially as all possible combinations of observations by all sensors have to be
considered.

Fortunately, there are few situations like the one shown in Figure 4.5, where dependence really
makes a decisive difference (see Section 4.3.8 below). Reasons for this are two-fold: First, taking
several measurements close by can still yield a substantial information gain if measurements are
noisy. Second, since robots share their past observations, their decision is anyway “dependent”
with respect to everything up to the present. Only the projected future observations are assumed to
be independent. Since it is computationally not possible to calculate more than a few steps ahead
into the future, the number of observations which are approximated in this way is relatively small.

Hence, for most practical purposes, taking independent decisions — in which case the com-
plexity grows linearly with the number of robots (or sensors) — is a sufficiently good approxima-
tion.

4.1.2.5 Multiple Sources

Multiple sources (of the same type of odor) are straightforward to model within the above model.
For N sources, the source state probability distribution simply becomes:

P(S = (sx,1,sy,1,sz,1,sr,1,sx,2,sy,2,sz,2,sr,2, . . . ,sx,N ,sy,N ,sz,N ,sr,N)) (4.13)
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However, as each source adds 4 dimensions to the distribution, this very quickly becomes com-
putationally intractable. Note that all dimensions are dependent, as the state of a source heavily
influences the probable states of all other sources, given the observations made.

The limit case of this actually has a dual formulation. Imagine each physical location hosts a
source, and each of these sources can either be switched on (at different intensity levels) or off.
The number of possibilities grows exponentially with the number of physical locations, rendering
the problem intractable.

This model is therefore only applicable if the source states space is very small. One may,
for instance, be looking for multiple sources in a hospital. Each of the patient rooms on a floor
potentially holds a source, but it is not of interest where in the room the source is located. Each
source would therefore only be in one of two potential states (on, or off), making the problem
tractable up to about 20 – 30 sources.

In many practical multi-source scenarios, however, single-source models should work reason-
ably. If two sources are very close to each other, they could as well be treated as one source. If
the sources are far away from each other such that their plumes do not mix, a robot will track
the plume of only one of the two sources. In addition, if the plume model is very general, the
robot will likely find one of the sources and treat the plume of the other source as “noise”. We
do not explore the multi-source problem any further in this thesis, and leave these assertions as
hypotheses to be verified in future work.

4.1.2.6 Contaminating Sources

A special form of the multi-source problem occurs when the state of all but one of the sources is
known. In this case the above formulation (see equation (4.13)) can be used, but

sx,2,sy,2,sz,2,sr,2, . . . ,sx,N ,sy,N ,sz,N ,sr,N (4.14)

will have fixed and known values, i. e., their distribution collapses into a single deterministic value.
The complexity of the model then reduces to that of a single-source model.

The contaminating source problem is actually very interesting from an applications point of
view. Imagine, for instance, the problem of finding the source of some “bad smell” in the neighbor-
hood. Compost bins or similar sources would obviously have to be considered as contaminating
sources, but their locations and intensities are known (or can be measured).

Similarly, when working with non-selective odor sensors, sources of other types of smell can
be inserted into the model as contaminating sources. As many odor sensors suffer from poor
selectivity, this feature is of particular interest.

While the model is straightforward to apply, there are a few practical considerations to be
made. Measuring the exact state of a source might be difficult or impractical. Furthermore, the
source to be found might be “shadowed” in the plume of one of the known sources, rendering the
problem particularly difficult. We do not explore this problem further in this thesis, and leave its
exploration for future work.

4.1.2.7 Moving Sources

In Section 4.1.1.1, we briefly mentioned the extension of this model to moving sources. If a
probabilistic description of the source movement is known, integrating it may seem fairly straight-
forward.

There is a small issue with this approach, however. Plume propagates at fairly low speed,
and the plume concentration measured by the robot causally depends on the state of the source
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somewhen in the past (and not of the current source state). The model presented here does not
take this into account, and might therefore fail with fast moving sources.

As long as there is only one robot taking one measurement, this is not a big issue. As the robot
gets closer to the source, the discrepancy between the estimated past state and the present state of
the source shrinks, and by the time the robot reaches the source, there is no discrepancy any more.

For multiple robots, this approach can be problematic, as different robots will make observa-
tions corresponding to the state of the source at different times. To properly take this into account,
the whole source state trajectory would have to be modeled as a random variable, which can add
significant computational complexity.

4.1.2.8 Changing Wind

A similar problem could arise if the plume propagation model changes over time, for instance as
a result of changing wind. While recalculating the plume propagation to account for the wind
profile is feasible, one would have to apply this to the plume that has been released by the source
in the past. This, again, can add significant computational complexity.

If a place is susceptible to different wind conditions, these different plume propagation models
can of course be combined to one static model. Such a model is obviously less specific, as it
ignores knowledge about the current wind conditions.

4.1.2.9 Robot Localization Uncertainty and SLAM

In many practical applications, the robot does not know its own position precisely, but has to
estimate it from features in the surroundings. This is the case when using SLAM [83], for instance.

Localization uncertainty in the observations (i. e., odor concentration measurements) can be
accounted for by extending the update step to distributions of observations, Ok,i ∈ Ok. All pos-
sible observations are thereby filtered into the source state probability with their corresponding
probability weight. The update step then becomes

P(Sk|Ok, . . . ,O0) = α ∑
i

P(Ok,i)P(Ok,i|Sk)P(Sk−1|Ok−1, . . . ,O0) (4.15)

When using probabilistic SLAM for mapping and localization, the probabilistic odor source
localization model presented here could even be completely combined with the probabilistic model
used for SLAM. The combined model (simultaneous localization, mapping and odor source local-
ization) would allow the robot to build a map including the odor source, and localize itself on
there. It is clear that such a model would be complex, but — at least from a theoretical perspective
— certainly worth investigating further. A similar approach applied to gas distribution mapping
was shown by Lilienthal et al. [85]. In this PhD thesis, we do not dig any deeper into this subject,
and leave this research axis for future work.

4.1.3 Optimality

A natural question to ask ourselves at this point is whether this algorithm is optimal. Within in-
formation theory, this approach is indeed optimal: we are taking into account all information (i. e.,
all observations we make), and we base our decision upon the highest information gain (highest
entropy decrease). This optimality is greedy, however, as the robot calculates the information gain
on a step-by-step basis only. To make the algorithm globally optimal, we would have to calcu-
late the information gain of each potential complete trajectory to the source, and not just the next
step. This, obviously, is computationally not feasible. (In the framework of strategic games, this

DISTRIBUTED ODOR SOURCE LOCALIZATION



84 4.2 Map-Centric Implementation

corresponds to completely solving a game, which is usually possible for relatively short or simple
games only.)

In addition, the decisions taken by the algorithm are greedy optimal with respect to the plume
propagation model only. If this model is inaccurate, the algorithm will forcibly come up with a
bad source state belief and take bad decisions.

Likewise, if the plume propagation model is very unspecific (even if accurate), the algorithm
might be inferior to algorithms using (explicitly or implicitly) more specific models. To illustrate
this, think of a plume propagation model yielding a uniform plume distribution over the whole
arena. What this says is that a plume filament released by the source could be measured anywhere
in the arena, and that there is no evidence to claim it is more probable to be measured in one place
rather than another (not even close to the source). Such a model is accurate, but unspecific. In this
particular case, it is even that unspecific that it is impossible to find the source based only on the
observations.

Practical implementations usually add a few more limitations related to parametrization or
discretization of the distributions. All observations made, as well as the source state belief have to
be approximated by either parametrizing or discretizing them. This also holds for the target points
(or paths) that are evaluated in the decision step.

4.2 Map-Centric Implementation

We first implemented the model described in Section 4.1 as a 2D point simulation with a simple
plume propagation model. Robots are thereby modeled as points moving in a finite 2D arena with
differential-drive kinematic constraints. The position of all robots and all obstacles is assumed to
be precisely known in an absolute reference frame. The implementation is therefore map-centric,
and inherently centralized3.

The simulation scenario, depicted in Figure 4.6, resembles the setup in the wind tunnel. The
arena is 18 x 4 m large, and the distance between the source and the robot starting position is 14 m.
The robot is not allowed to leave this arena, and its boundaries are modeled as walls. The source
intensity is assumed to be known, and the state of the source can therefore be represented with the

3The program could of course be run directly on a robot, or ported to a distributed system using standard computer
science techniques. But the underlying concept is that of a centralized algorithm where all pieces of information come
together at one single point.

Figure 4.6: Scenario of the probabilistic odor source localization experiments with absolute lo-
calization. (a) Real location of the odor source, and the plume (average concentrations) generated
by it. (b) Belief of the source location (darker = more probable). (c) Robot with the path planner
tree and the selected path indicated by the big arrow. (d) Trajectory with observations. The bigger
the stars, the higher the concentration was at that point.
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Figure 4.7: Implementation of the 2D probability distribution to model the believe of the odor
source.

following 2D probability distribution:

P(S = (sx,sy)) (4.16)

At the beginning of each experimental run, this probability distribution is uniform over the whole
arena, i. e.,

P(S = (sx,sy)) =
1

18 ·4
(4.17)

There are several ways of representing probability distributions on a computer [82]. We chose
a grid-based approach (static particles on a regular lattice) with particles spaced by 20 cm. In
between particles, the probability value is linearly interpolated using the 4 neighboring particles,
as shown in Figure 4.7. This was found to be a good trade-off between accuracy and computational
load.

The plume propagation model for an observation at (x,y) and a source at position (0,0) is

ry = exp

(
−2
(

y
Aw +Adx

)2
)

(4.18)

rx =

{
1−Acx2 if 0 <= x < A−

1
2

c

0 otherwise
(4.19)

C ∼ Poisson(λ = Asrxry) (4.20)

where Aw = 0.5 is the plume width parameter, Ad = 0.03 the diffusion parameter, As = 3.0 the
scaling parameter, and Ac = 0.002 the decay parameter. Odor concentration is measured in hits, an
approach which was also used in the original infotaxis paper [30]. Each measurement corresponds
to a discrete number of hits, which is assumed to be a sample of the Poisson distribution C.

Note that this model does not have a direct physical interpretation, but produces a plume map
similar to the one measured in the wind tunnel (see Section 2.1.7). The underlying wind flow in
this model is a laminar flow from left to right. The wind speed, however, is not explicitly defined
and irrelevant in this scenario.

Each robot is endowed with a basic multi-step-ahead path planner. It builds a trajectory tree
from the robots’ current position and checks for each trajectory whether it is feasible or not. The
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Figure 4.8: Path planner trees used for the experiments. The plots show trees with a target dis-
tance of 0.25 m. The gray shading of layers 2 and 4 only serves visualization purposes. Note that
our path planner only considers forward trajectories, as backward trajectories are not relevant in
these experiments and would only increase the computation time.

only reason for a trajectory to be erased is if the robot would bump into an obstacle otherwise. The
path planner trees used in these experiments are depicted in Figure 4.8. Unless otherwise stated,
the tree labeled “normal curves” was employed with different target distances. The target distance
has a dual influence on the experiments: As a robot only makes a single observation per step, it will
make more observations when shorter target distances are used. Hence, it has more information
to fuse into the source probability distribution. On the other hand, shorter target distances will
translate into slower robot speeds, or higher perception-to-action loop speeds, on a real system.

A substantial effort in this implementation was put in the decision step algorithm, which han-
dles both multiple robots and multi-step-ahead evaluation at the same time.

For multi-robot evaluation, robots can be combined to evaluation groups. Within an evaluation
group, all robots are evaluated in a dependent fashion. Evaluation groups themselves are evaluated
independently from each other. (Robots in any case share all their observations, no matter whether
they are in the same evaluation group or not.)

Within an evaluation group (set of robots), all combinations of trajectories are evaluated up to
a certain depth (evaluation depth) of the path planner tree. Since path planning is computationally
much cheaper than trajectory evaluation, the evaluation depth is limited to 1 – 3 steps in the exper-
iments. After each evaluation, all robots move to the first-level target which was found to be best
for themselves (independent evaluation) or the group (dependent evaluation).

Note that the simulation operates in synchronous steps and implicitly assumes that all robots
reach their target positions at the same time (or wait there until all robots have reached their
target positions). Low-level dynamics of the robots, its sensors and its actuators are not simulated.
Hence, the simulation program does not keep track of any physical notion of time, but only of
simulation steps which would ultimately translate into time if the algorithm was applied on a real
platform. Nevertheless, calculating the success rate and distance overhead is straightforward, as
they only depend on the trajectory.

4.2.1 Results

We run experiments for the 15 configurations listed in Table 4.1. For each configuration, we carried
out 50 runs each for 11 different target distances, totaling to 8250 runs. A run was called successful
as soon as the robot reached proximity (50 cm) of the source. The only failure possibility was when
the path planner was unable to come up with any viable path, which could happen in corners. The
success rate is therefore not indicative for the odor source localization performance.
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 B: Multi−step−ahead calculation with 3 robots
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 C: Dependent vs. independent evaluation

Target distance [m]

T
ra

ve
le

d 
di

st
an

ce
 d

t / 
up

w
in

d 
di

st
an

ce
 d

u [m
/m

]

98
%

10
0%

96
%

10
0%

96
%

10
0%

88
%

94
%

92
%

86
%

90
%

90
%

98
%

98
%

98
%

10
0%

96
%

96
%

94
%

96
%

88
%

90
%

Success rates:

2 robots, independent evaluation, 1 step ahead
2 robots, dependent evaluation, 1 step ahead

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
 D: Dependent vs. independent evaluation
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 E: Dependent vs. independent evaluation
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 F: Different curvatures
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Figure 4.9: Results obtained with the point simulation assuming absolute localization. A, B:
Influence of multi-step-ahead evaluation with 1 robot resp. 3 robots. C, D, E: Dependent vs.
independent evaluation with 2 robots with 1-step-ahead evaluation, 2 robots with 3-step-ahead
evaluation, and 3 robots with 1-step-ahead evaluation. F: Effect of the curvature parameter.
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Table 4.1: Configurations in which the map-based implementation of the probabilistic model was
tested.

Algorithm Robots Steps ahead Evaluation Path planner
1

A Map-centric probabilistic OSL 1 2 – normal curves
3
1

B Map-centric probabilistic OSL 3 2 independent normal curves
3

C Map-centric probabilistic OSL 2 1
independent

normal curves
dependent

D Map-centric probabilistic OSL 2 2
independent

normal curves
dependent

E Map-centric probabilistic OSL 3 1
independent

normal curves
dependent

mild curves
F Map-centric probabilistic OSL 1 2 – normal curves

sharp curves

The results are shown in Figure 4.9. Plots A and B show the impact of multi-step-ahead
evaluation. Evaluating 2 steps ahead yields a significantly better performance than with just 1
step ahead. The third step ahead, however, does not increase the performance any more. Using
multiple robots also increases the performance. While the distance overhead for 1 robot with one-
step-ahead evaluation is about 1.2, it drops to about 1.05 for three robots with three-step-ahead
evaluation.

Plots C, D and E compare dependent vs. independent evaluation for different configurations.
All plots indicate that there is no significant advantage of dependent over independent evaluation
for multiple robots. In theory, dependent evaluation should be at least as good as independent
evaluation. This difference could be too small to be visible here, however, since most of the time,
dependent and independent evaluation yield exactly the same result. With both dependent and
independent evaluation, the robots share all their observations up to the current time step, and
therefore have a common basis for their decision. With dependent evaluation, the robots also
share the fictive observations assumed during the evaluation process, whereas with independent
evaluation, these fictive observations are not shared. Since there are only few fictive observations
as compared to real observations, they only have a minor impact.

The target curvature does not have a significant influence in the range tested here, and even
different target distances only have a minor impact. The latter has to be attributed to the ideal-
istic and static environment. Since the odor hits are sampled from the plume model itself, a few
observations are enough to get a good belief of the source location. Whether the robot makes 25
observations (with a target distance of 70 cm) or 85 observations (with a target distance of 20 cm)
does not make a big difference any more.

4.3 Train Station Scenario

In the previous section, we discussed a map-centric implementation of the probabilistic model.
While this implementation is able to deal with walls and obstacles, the environment we used to
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Figure 4.10: The train station scenario used in Section 4.3. The room is 18 x 10 m big, and
represents a simplified version of room as it might exist in a train station. The gray shading stands
for the wind speed, and the arrows indicate the main wind flows. Both doors on the left are wind
inlets, and the door on the right is the only wind outlet. Wind speeds are in the order of 0 – 1 m/s.

carry out simulation experiments was very simple, and the plume propagation model as well.
To demonstrate the potential of the probabilistic model for real applications, we therefore

extended the previous implementation to use a data-driven plume propagation model. The scenario
used in this section is the room depicted in Figure 4.10, a simplified 2D version of a room such as
it might exist in a train station building. It has three doors: two through which wind flows into the
room, and one (on the right), through which the wind flows out. A kiosk and a vending machine
are in the middle of the room, and lockers can be found along one of the walls.

An odor source is expected somewhere in this room, but its location is unknown. Such an odor
source could be a maliciously placed bomb (releasing minute amounts of an explosive substance),
for instance, or a drug dealer (releasing minute amounts of the drug) waiting for a customer.

Note that this is a toy example neglecting many issues. A real application in a train station
would have to deal with a 3D room, changing wind conditions, people walking around, material
lying on the floor, uncertainties of the map, and so on. However, for the purpose of showing the
concept and demonstrating the possibilities, the present level of details is fully sufficient.

4.3.1 Modeling the Plume Propagation

The main difference as compared to the simulation shown in Section 4.2 is the plume propagation
model. While the previous simulation used a generic model which was independent of the location
of the source, the present model consists of precomputed plume propagation data for each potential
source location. Data were computed in two steps:

1. First, the scenario was simulated in a CFD (computations fluid dynamics) program. For this
simple setup, we used EasyCFD [25]. After all walls, wind inlets and wind outlets were
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Figure 4.11: Result of the wind flow computation in EasyCFD [25].

Figure 4.12: Plume propagation maps for two different source locations. The plume propagation
model used for the train station scenario consists of 4500 such maps. The gray shading stands for
the wind speed, while the olive shading is proportional to the odor concentration.

defined, the program calculated the wind flow through this room. A picture of the result is
shown in Figure 4.11.

2. This wind data was then used in combination with Farrell’s filament dispersion model [7]
to create plume maps as those shown in Figure 4.12. Each such map was built by sim-
ulating 500 filaments. The map is a (scaled) 2D histogram of the filament trajectories
with a 20 x 20 cm resolution. Maps were created for potential source locations on a reg-
ular 20 x 20 cm lattice over the whole area.

The so created data consist of 4500 individual plume maps stored as 176 MB of raw data
(18 MB compressed). The plume model equation used in the previous simulation was replaced by
a lookup in these plume maps with linear interpolation between data points. The rest of the imple-
mentation (update step algorithm, decision step algorithm, path planner, . . . ) was not modified.
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4.3.2 Experiments

As this is an arbitrarily chosen scenario, we did not carry out any systematic experiments. Instead,
we demonstrate possibilities and limitations of the algorithm through a set of representative runs.
In all runs, robots are modeled as points, and inter-robot collision is neglected. Each robot is
associated with a 5-step-ahead path planner which takes into account the kinematic constraints of
the (differential-drive) robot, and prevents the robot from running into obstacles.

The odor sensor is sampling odor hits from the plume model data. Hence, the plume model
is perfect with respect to the simulated odor propagation. By doing so, we neglect any plume
propagation dynamics and implicitly assume that the source has been in the area for a duration
that is sufficiently long for the odor to propagate through the whole room.

Note that the robots are not equipped with any wind direction sensor here, and wind is not
simulated at all. Wind speed and direction actually only helps building a plume model. It is not
the actual wind information, but the resulting plume model that odor source localization algorithms
use. In this train station scenario, a complete and accurate plume model is provided to the robot,
and therefore makes any information about the wind flow superfluous.

4.3.3 Plume Tracking with 1 and 2 Robots

Figure 4.13 shows 6 successful plume tracking runs with 1 or 2 robots, and up to 3-step-ahead
target evaluation. In all runs, the robots are going upwind towards the source. With 1-step-
ahead evaluation, the trajectory clearly exhibits counter-turning (zig-zagging), which is almost
not present with 2- or 3-step-ahead evaluation.

The runs with 2 robots show very nicely how the robots explore the plume boundary, rather
than staying in the center of the plume. Indeed, the plume boundary is where most information
can be acquired. In the (expected) center of the plume, the robot expects to get a hit anyway, and
a measurement is therefore superfluous there. In one of the runs, the robots explore both sides of
the plume boundary, which is the optimal strategy. In one run, the robots mostly stay on the same
side, which is a local optimum that is almost as good as the global optimum. Robots therefore like
to stay on the same side once they have started that way.

4.3.4 Unreachable Source

In Figure 4.14, robots are tracking a source that turns out to be not reachable. For some external
reason (e. g., debris lying around, delicate surface, dangerous area, . . . ), robots are not allowed to
enter the zone inside the circle, and it turns out that the source is inside this circle. If the source
was placed maliciously, the attacker could actually have done that on purpose.

The path planner makes sure robots do not enter the forbidden area. But even though the
robots are unable to physically reach the source, they come up with an accurate belief of the
source position within the circle. Such information can be critical for human investigators when
deciding upon further actions.

4.3.5 Non-Uniform Prior

Vice-versa, human investigators may have obtained information about the source location prior
to launching the robots4. Figure 4.15 shows an example in which investigators believe that the
source is located close to one of the doors. They therefore assign a 10 times higher probability

4Such information could also stem from other sensors in the environment or on the robots. For instance, camera
images may have been processed to detect objects likely to be sources [26] [13].
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(a)

(b)

1 robot

(c)

2 robots

Figure 4.13: Plume tracking with 1 or 2 robots in the train station scenario. The pictures depict
the situation when the robot first reached vicinity of the source (ideal source declaration). Note
that the posterior usually still contains areas upwind of the actual source location, because the
robot approached the source from the downwind area. (a) 1-step-ahead evaluation. (b) 2-step-
ahead evaluation. (c) 3-step-ahead evaluation.

1 robot, unreachable source 2 robots, unreachable source

Figure 4.14: Tracking an unreachable source in the train station scenario. The robot is not
allowed to enter the circle in which the source is located, but nevertheless comes up with a very
good estimate of the source location.
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Prior before launching the robot Posterior after 10 observations

Figure 4.15: Tracking an source using a non-uniform prior belief. The areas around the doors
are assigned a 10 times higher probability of hosting the source. Such information helps the robot
spotting the source.

to these areas. After 10 observations (with just 2 odor hits), the robot has spotted the door, and
narrowed down the area. Since locations outside the areas in front of the door are just less likely,
but not impossible to host the source, the robot also considers the area downwind from that door
somewhat likely.

This is important, as shown in Figure 4.16. In this example, the prior was wrong and the source
elsewhere. At the beginning (after 8 observations), the robot assigns a very high probability to the
area in front of the leftmost door. Through subsequent measurements, the corner where the source
really is obtains more and more probability mass, and just before reaching the source (after 53
observations), the robot can exclude most of the area in front of the leftmost door as potential
source location.

4.3.6 Surveillance and Area Coverage

In the previous examples, we mostly looked at plume tracking in different situations. The proba-
bilistic model used here is also fairly good at doing area coverage to show that no source is present.
This can be interesting for surveillance tasks, for example, where no source is available for most
of the time, or for area reduction in humanitarian demining [86].

Figure 4.17 shows the trajectory of a robot doing surveillance. No source has been placed, and
in each step, the robot assumes with a 1 % chance that a source has just been placed somewhere
in the room. To model this, the prior source state distribution of the current step is not simply the
posterior distribution of the previous step, but a weighted sum of this posterior distribution (99 %)
with a uniform distribution (1 %). Hence, the robot needs to continuously sweep through the room
to prove that there is still no source around. (If it stopped taking measurements, the probability
distribution would converge towards a uniform distribution after some time.)

The robot first sweeps in a zig-zag fashion towards the right (downwind), and can thereby
mark large parts of the room as unlikely to host a source. Even areas quite far away from the
trajectory can be marked as “unlikely” using the plume propagation model. In the second part,
the robot stays in the downwind area and keeps moving along similar trajectories there. Indeed,
measuring in the downwind area is almost sufficient to detect an odor source should one appear
anywhere in the room, as its plume would ultimately be carried to the downwind area.

The only two areas which are not well covered by this are the two corners on the left, and
the robot will never go up there with the current configuration. The reason is simple: the robot’s
coverage strategy is near-optimal locally, but not globally. It never evaluates whether exploring
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Prior before launching the robot Posterior after 8 observations

Posterior after 32 observations Posterior after 53 observations

Figure 4.16: Tracking an source using a non-uniform prior belief that turns out to be wrong. The
areas around the doors are assigned a 10 times higher probability of hosting the source, but the
source is located outside of these areas.

After 100 observations After 939 observations

Figure 4.17: Coverage (or surveillance) task to monitor whether there is a source located in the
room. As long as no source is available, the robot stays in the downwind area to maximize its
chances of finding the source, should one suddenly appear.
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Trajectory 1, e = 8.11 Trajectory 2, e = 7.89

Figure 4.18: Two preprogrammed trajectories for a patrolling mobile robot and their evaluation.

these corners would be helpful or not, and therefore never gets to explore them.
To get around this issue, the robot could evaluate global targets on the map [17], instead of (or

in addition to) the local targets around its current position. We do not dig further into probabilistic
coverage for odor sources here and leave that research to future work.

4.3.7 Analyzing the Optimality of a Given Trajectory

There are a number of other algorithms for solving coverage problems with mobile robots. In
addition, real-world scenarios may put a lot of other constraints. Hence, instead of letting the
robot move autonomously, it may be necessary to preprogram a fixed trajectory along which the
robot patrols.

In such a scenario, the probabilistic model can be used to analyze the trajectory with respect
to optimality and zones that are not well covered. Two such trajectories are shown in Figure 4.18.
The results show that by patrolling along trajectory 1, only a small area is covered. Trajectory
2, which is about twice as long, covers a much bigger part of the total area, and only leaves a
few zones unsupervised. This is also reflected by the entropy, which is significantly lower for
trajectory 2.

Note that a similar procedure could also be used to derive the optimality of a trajectory in
presence of a source.

4.3.8 Placing Static Sensors

Instead of letting a robot sweep through the train station room all day, it would be easier (and
probably cheaper!) to mount a number of static sensors in this room. From a modeling perspective,
a static sensor is mostly to a robot that does not move. Within our framework, a static sensor is
a robot with a path planner which offers only one possible trajectory: standing still. As for any
robot, we assume the exact location of the sensor is known, and its measurements (observations)
as filtered into the probability distribution just as any other observation is.

In addition, the probabilistic model can calculate optimal locations for these sensors. To do
that, let us assume a sensor can jump to any location in the area of interest. This can easily be
implemented as a path planner which suggests plenty of viable target locations. After evaluation
of all these targets (decision step), the target with the lowest expected entropy designates the best
place for a sensor node. The decision step algorithm is thereby exactly the same.

Obviously, one sensor is not enough to cover the whole room. To deploy multiple sensors, we
first need to define the purpose of our network of sensors. In contrast to a robot, which attempts
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Locations (lattice with 40 cm spacing) for the
first sensor node are evaluated. Guided by this
data, but having constructional constraints in
mind, the user places a base station in the up-
per right corner.

Locations for the second sensor node are eval-
uated under the assumption that sensor node 1
did not measure any odor. The second sensor
node is placed in proximity of the kiosk in the
middle of the room.

Using the same procedure, three additional
sensors are placed in proximity of the right-
most door, and one next to the vending ma-
chine.

The resulting sensor network (6 sensors) cov-
ers the majority of the area. Only the areas
shaded in gray are not yet well covered by the
sensors. To further optimize the location of
these 6 sensors, each sensor could now be re-
moved and replaced while holding the other 5
sensors at fixed locations.

Figure 4.19: Finding good sensor node locations in the train station scenario. Sensor locations
are evaluated on a regular 40 x 40 cm lattice (red hexagons). Larger hexagons denote lower ex-
pected entropy, and therefore better location quality. The algorithm applied here is a heuristic
which finds good locations within a reasonable time.
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(a) (b)

Figure 4.20: Coverage (or surveillance) task with 6 sensors to monitor whether there is a source
located in the room. The sensor network not only reports that there is a source in the room, but
also provides hints about its location.

to localize an odor source, the purpose here is to raise an alarm whenever a source appears. The
problem is not that of source localization, but that of room coverage. Hence, any sensor node
should be placed at the location yielding the lowest expected entropy, given that none of the other
sensors has detected any odor (for some time).

Sensor node locations are therefore highly dependent (probabilistically), and calculating op-
timal locations for all node grows exponentially with the number of nodes. Since each node has
plenty of potential target locations, this approach is computationally not viable, even for a small
number of nodes.

Fortunately, good results can be achieved by heuristically placing (or moving) one sensor after
the other. When looking for the optimal location of a sensor, the position of all other sensors is
thereby assumed to be fixed. The following procedure can be applied iteratively to place (or move)
sensors to good locations:

1. Initialize the source probability distribution (e. g., uniformly).

2. Place all sensors in the environment for which locations have been found already (if any).

3. For each sensor, filter one (or more) no-odor observations into the source probability distri-
bution.

4. Evaluate the entropy decrease of all potential locations for the sensor node to add, and chose
the best.

Figure 4.19 shows a sensor placement example based on this procedure. For all practical purposes,
the sensor locations found by applying these steps are probably good enough. Mounting such
sensors in a building will anyway heavily depend on construction issues, and a mathematically
optimal solution will hardly be implementable. In such circumstances, it is better to find a new
sensor location given the actual (and not the ideal) locations of all other sensors.

4.3.9 Surveillance with Static Sensors

Figure 4.20 shows two examples of source detection by the 6 static sensors placed before. In
example (a), the source was placed at a location that is well covered by the sensor network and the
sensors come up with a fairly good estimate of the source location. Indeed, since sensors 3 and 4
do not measure anything, the source is almost certainly not in the lower part of the room. From

DISTRIBUTED ODOR SOURCE LOCALIZATION



98 4.3 Train Station Scenario

(a)

(b)

Source close to door

(c)

Source between kiosk and wall

Figure 4.21: Odor source localization with 6 static nodes and 1 mobile robot in the train station
scenario. (a) The sensor network raises an alarm, but is unable to tell where exactly the source
is. In particular, it is unable to discriminate between the two sources. (b) The probabilistic model
suggests deploying a robot between the lowermost door and the kiosk (area with the biggest red
hexagons). (c) In both cases, the robot finds the source within a very short time.

the concentrations measured mainly by sensors 0 and 2, the probabilistic model can deduce that
the source is likely to be close to the leftmost door, or downwind from there.

In example (b), the source was placed at a location not well covered by the sensor network.
It is still detected, but the probabilistic model has some doubt about its location. Several badly
covered areas are candidates for hosting the source, and obtaining a more accurate estimate with
the current sensor network is not possible.

4.3.10 Source Localization with Static Sensors and Mobile Robots

In order to track down an odor source once the sensor network has raised an alarm, mobile robots
could be deployed. In Figure 4.21, two scenarios are shown where the sensor network comes up
with roughly the same belief about the source position, even though the sources are at different
places. The probabilistic model then suggests taking measurements in the area where it suspects
the source to be. In both cases, a robot is deployed in this area, which finds the source within a
short time.
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4.3.11 Conclusion of the Train Station Scenario

The train station examples shown above demonstrate the usefulness of the probabilistic model for
a variety of tasks. The core algorithm, consisting of an update step and a decision step, is thereby
exactly the same all the time, and only the inputs are modified:

. To guide a robot to a source (plume tracking, source localization, search), the trajectories
proposed by the path planner are evaluated by the decision step algorithm, and observations
are filtered by the update step algorithm.

. To cover an area with a mobile robot (coverage), the update step algorithm is fed with
observations that no plume is measured.

. To place static sensor nodes, the decision step algorithm evaluates all potential locations for
that node.

. Similarly, to deploy a robot, the decision step algorithm evaluates all potential release loca-
tions.

Hence, this framework is extremely flexible and general.
In addition, the algorithm can easily be integrated into (or combined with) other systems and

processes. We have seen how prior evidence can be integrated, and how information collected
during plume tracking can help human investigators even if the robot does not reach the source.

It is clear that this toy example neglects many real-world issues that would have to be addressed
when applying this model to a real scenario. In particular, it may not be trivial to obtain a faithful
and yet detailed plume propagation model, especially for dynamic environments. Nevertheless, we
believe that such issues can be solved, although some will offer interesting research opportunities.

4.4 Lightweight Robot-Centric Implementation

When trying to use the map-centric implementation used in the previous sections on the real robots,
it quickly turned out that the computational power of the Korebot was not sufficient to carry out
all the calculations within a reasonable time. In brief experiments (that we do not further elaborate
here), calculating one complete step (i. e., one update step plus one decision step with 4 targets)
took about 50 seconds.

In addition, the implementation of the previous section assumes perfect global localization
of the robot. While we could emulate this in the wind tunnel using the camera system, global
localization is difficult to achieve in some potentially interesting environments, such as disaster
recovery areas.

We therefore passed to a second implementation of the probabilistic model, but this time with
a reference frame relative to the robot’s pose. This new algorithm is robot-centric and inherently
designed to run in a fully distributed fashion (if multiple robots are used) on the robot(s). Further-
more, the calculation overhead was reduced with a number of tricks:

. Since the processor on the robot does not have native floating point support (see Table 2.1),
the algorithm was implemented with fixed-point integers. Additions and multiplications,
which represent the majority of the operations, can thereby be sped up by a factor of 2 to
5. If implemented carefully, the precision does not suffer, but the time needed to implement
and test an algorithm is multiplied by about 5 to 10.
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Figure 4.22: Two different views of the plume model used for the robot-centric implementation
of the probabilistic model. The model is general and can be evaluated at any point with a few
CPU instructions only. In both pictures, the source is at (0,0), and the wind blowing in positive X
direction. The plume extends to infinity, but only a 2 x 2 m area around the source is plotted here.

. Parameters were approximated to the nearest power of 2 whenever this made sense. This
way, many divisions could be replaced by bit shift and mask operations which execute as
fast as integer additions. (Yet, the algorithm parameters are still kept in SI units!)

. Integer versions of the functions sin and cos were implemented with a lookup table and
linear interpolation. Furthermore, sin(α) and cos(α) are calculated in one step, as they are
always used together (for rotations).

. To generate random numbers, we use the Mersenne Twister algorithm [87] which is faster
(and better) than the built-in rand() function.

. The source belief distribution is approximated with up to 1024 particles, and observations
are integrated using particle filtering. The number of particles is a trade-off between ac-
curacy and computational overhead, whereby the latter grows linearly with the amount of
particles. This allows for fine-grained adjustment of this trade-off with respect to the avail-
able computational power.

. Particles cover an area of only 4 m by 4 m in which the robot is in the center. If the source
is further away, this is enough to make the robot go in the right direction.

. We are using lazy updates in several places. Particle weights, for instance, are normalized
only when needed. The robot is always around the center, but not exactly in the center of
the reference system. Furthermore, we never rotate the reference system, as rotating all
particles is more expensive than rotating the target points.

. At each step, we move the particles to a random location near their current location. This
effectively flattens out the source probability distribution, and is a simple and fast way to
account for odometry errors, wind sensor noise, or other inaccuracies.

. To move more particles to interesting areas, big particles are split into two, and an equal
amount of small particles are removed. This way, the number of particles always remains
constant.

DISTRIBUTED ODOR SOURCE LOCALIZATION



4. Probabilistic Algorithms 101

Figure 4.23: Histograms used to evaluate the quality (as replacement of the entropy) of the par-
ticles. Each histogram consists of 32 x 32 square bins arranged regularly over the 4 x 4 m area
around the robot. The histograms are shifted by half a bin in both directions to minimize effects of
the bin borders.

. To forget history, and to avoid particles being caught in one area (known as the kidnapped
robot problem in probabilistic self-localization), 8 particles are moved to random locations
(in the 4 m by 4 m area around the robot) at the end of each step. Particles are chosen
in a round-robin fashion, which guarantees that a particle is moved to a random location
every 128 observations when using with 1024 particles, and even earlier when using fewer
particles. Put differently, the robot completely forgets observations that have happened more
than 128 steps ago.

. The plume model, depicted in Figure 4.22, is kept simple and general. It is generated by
the function

P(c = 1|x,y) =
1

16
+

1
2
·
{

1−16y2 if x > 0m and −0.25m < y < 0.25m
0 otherwise

(4.21)

and rotated according to the current wind direction measured by the robot.

. Observations are binary, which greatly reduces the number of potential observations to
evaluate in the decision step.

. As calculating the information entropy with fixed-point integers in the decision step is
tricky and lengthy, it is replaced by a function that is easier to calculate. Particles are thereby
collected in two histograms with 1024 bins, in the way depicted in Figure 4.23. Let us denote
the bins of one histogram as ai, and those of the other histogram as bi. The quality q is then
calculated as

qa =
1

∑i=1..1024 ai
∑

i=1..1024
a2

i (4.22)

qb =
1

∑i=1..1024 bi
∑

i=1..1024
b2

i (4.23)

q =
1
2
(qa +qb) (4.24)
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Figure 4.24: Target positions (hexagons) that are evaluated at each step. In each iteration of the
algorithm, all 10 target positions are evaluated, and the best target dictates the wheel speed.

Initial position Step 10

Step 450 Step 900

Figure 4.25: Screenshots of the simulation program. The black circle (to scale) is the robot, and
the yellow tail its trajectory. Particles are drawn as small gray hexagons, and darker particles
have more weight. The yellow tiles in the background are spaced by 1 m and only serve visualiza-
tion purposes. The odor source, represented with a green square, is only visible in the screenshot
of step 900.
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Using two histograms in this way reduces bin border effects. With a single histogram, sim-
ilar particle distributions could result in significantly different q values. Note that creating
a histogram and squaring its values is a matter of only about two dozen operations per par-
ticle, plus half a dozen per histogram bin. As this function is called twice for each target
position to evaluate, this is an important optimization. (Note that this is much cheaper as
compared to approximating the distribution with a normal distribution, for which the en-
tropy is known.) q exhibits an inverse behavior with respect to the entropy: the higher q, the
more we know about the position of the source.

. Only the 10 target positions depicted in Figure 4.24 are evaluated in each decision step. No
path planner tree is used and no multi-step-ahead calculation performed. The goal is just to
figure out whether going left, right, or straight is better in the current situation. The target
positions therefore do not represent actual points that the robot will drive to — the robot
only drives a few millimeters from one step to the next — but are located much further
away from the robot. This can be compared to multi-step-ahead calculation, except that
intermediate observations are not considered in the evaluation.

Despite all the simplifications and approximations, the algorithm still implements the proba-
bilistic model presented in Section 4.1. A few screen shots of the simulation program are depicted
in Figure 4.25.

4.4.1 Complexity and Execution Time

The complexity (per robot) of this implementation is only

O(#particles ·#targets) (4.25)

which is the complexity of the decision step. This is mostly the result of avoiding multi-step-ahead
calculation, and representing the distribution with particles.

In addition, the constant factor in this complexity is very low. On the Korebot processor
board on the Khepera III robot, steps can be executed at up to 11.5 Hz, including the overhead to
communicate with the sensors (approx. 5 ms per step) and actuators (approx. 1 ms per step).

4.4.2 Abstract Simulation

In order to test the implementation and to check the influence of the parameters, we first carried
out a number of simulation experiments at a high abstraction level. The wind direction, wa, was
thereby set to

wa ∼ Uniform(−we,we) with we =
360 ◦

32
= 11.25 ◦ (4.26)

and the odor hits were randomly sampled with probability

P(c = 1|x,y) =
{

1−16y2 if x > 0m and −0.25m < y < 0.25m
0 otherwise

(4.27)

where x and y denote the robot position relative to the source, and the wind is blowing in positive
X direction. This is the same as the plume model (see equation (4.21)), but scaled differently. The
robot was simulated as a differential drive robot with the same wheel and axis parameters as the
Khepera III robot.

The following sets of experiments were launched:
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Figure 4.26: Distance overhead and success rate obtained with the point simulator for different
configurations. The error bars indicate the 95 % confidence interval for the mean (assuming
exponentially distributed data), while the dots stand for results of individual runs. A: With varying
number of particles. B: With different loop intervals. C: With different target distances. D: With
different differential speeds.

Algorithm Particles Loop interval t s d
A Probabilistic OSL variable 128 ms 25 cm 10.6 cm/s 5.8 cm/s
B Probabilistic OSL 1024 variable 25 cm 10.6 cm/s 5.8 cm/s
C Probabilistic OSL 1024 128 ms variable 10.6 cm/s 5.8 cm/s
D Probabilistic OSL 1024 128 ms 25 cm 10.6 cm/s variable

t, s, and d are the target distance, the forward speed and the differential speed, respectively,
defined as in Figure 4.24. Each set consists of 9 choices for the variable parameter with 200
independent runs each. In each run, the robot was released in the odor at a position 14 m downwind
from the odor source. If the robot reached the odor source within 256 s (dt ≈ 27 m), the run was
considered successful. Distance and upwind distance were derived from the trajectory, recorded
during the run. The forward speed of the robot (on straight lines) was 10.6 cm/s and therefore
same as for the experiments with the bio-inspired algorithms in Section 3.2.

The results are plotted in Figure 4.26. Most noticeable is the dependence on the loop speed.
For high loop intervals (low loop speeds), the performance drops significantly. Three reasons can
be attributed to that: First, as only one odor measurement is taken (and filtered into the source
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Figure 4.27: Successful point simulation runs with different loop speeds. All runs are with 1024
particles and one odor concentration measurement is taken per loop iteration. With lower loop
speeds, the algorithm produces more casting behavior, yielding very long trajectories.

probability distribution) per iteration of the loop, far less information is available to the algorithm.
Second, each decision results in a trajectory of several centimeters until the next decision is taken.
This is a substantial distance as compared to the plume width. Third, the robot moves too fast
for particles to stay in the 4 x 4 m area around it, and the heuristic algorithm moving the particles
to places of high probability is not able to keep up with that speed. Hence, within a dozen steps,
most particles are lagging behind the robot and only very few particles are modeling the source
distribution in front of the robot. Note that this last point is only an implementation issue — the
way particles are redistributed could be changed to fix this issue. Figure 4.27 displays trajectories
of a few runs with different loop speeds, where the impact of the loop speed on the trajectory can
be observed.

Interestingly, the number of particles (over the range from 256 to 1024 particles) does not
have a big influence on the performance in this point simulation. Even the result for 256 particles
(distance overhead of 1.05, 91 % success rate) is still good as compared to the best bio-inspired
algorithms. Since we are using a perfect plume model (with respect to the simulated plume), the
probability distributions are very “nice”, and a low number of particles are enough to approximate
it.

Another very positive result is that the performance is over a wide range almost independent
from the differential speed. The algorithm will simply keep turning in one direction until it believes
the robot is heading the odor source again.
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Overall, the results are extremely good. Over a large range of parameters, the success rates are
above 99 %, and the average distance overheads, do, roughly 1.01. Hence, in ideal conditions, this
probabilistic algorithm achieves near-optimal performance.

4.4.3 Robotic Simulation (Webots)

After the simulations at a high abstraction level, we carried out experiments with Webots [72]
using the odor simulation plugin presented in Section 2.2. Exactly the same controller with the
same configuration was used, except that sensors and actuators were simulated by Webots. The
measured odor concentration, c(x,y), was thereby converted into random hits using

P(c = 1|x,y) =

{
log2 c(x,y)

pt
for log2 c(x,y) < pt

1 otherwise
(4.28)

In this equation, pt is the concentration ceiling, a free parameter of the algorithm. The concentra-
tion readings were passed through the log2 function to account for the large dynamic range of the
odor concentration measurements. The simulation setup with all parameters was the same as for
the bio-inspired algorithms (see Section 3.2.2), and the results are therefore comparable.

The following sets of experiments were launched:

Algorithm Particles pt σa Loop int. t s d
E Prob. OSL variable 9 10 cm 128 ms 25 cm 10.6 cm/s 5.8 cm/s
F Prob. OSL 1024 variable 10 cm 128 ms 25 cm 10.6 cm/s 5.8 cm/s
G Prob. OSL 1024 9 variable 128 ms 25 cm 10.6 cm/s 5.8 cm/s

Each set consists of 9 choices for the variable parameter with 200 independent runs each. In
each run, the robot was released in the odor at a position about 14.5 m downwind from the odor
source. If the robot reached the odor source, the run was considered successful. If the robot
touched an arena wall, the run was aborted and declared unsuccessful. Distance and upwind
distance were derived from the trajectory, recorded during the run. The forward speed of the robot
(on straight lines) was 10.6 cm/s and therefore same as for the experiments with the bio-inspired
algorithms in Section 3.2.

The results are plotted in Figure 4.28. As observed with the point simulator already, the
number of particles (over the tested range) only has a minor influence on the performance. Runs
with lower numbers of particles tend to be slightly less successful.

The wind sensor noise has a major impact on both the distance overhead and the success
rate. We observe an almost binary behavior: up to σa = 16 cm, the performance is very good,
while for σa ≥ 32 cm, the performance drops significantly and abruptly. Indeed, our probabilistic
model does not model any noise for the wind direction sensor, i. e., any measured wind direction
is considered accurate. This is a good approximation for accurate wind directions sensors, but
entails devastating side effects for noisy wind direction sensors. Taking this noise into account
is straightforward from a theoretical point of view, but computationally rather expensive for our
highly optimized implementation.

The concentration ceiling, pt , has a small impact on the distance overhead. There seems to be
an optimal point at 8 in our simulation, but even with pt = 11, the performance is still very good
as compared to the bio-inspired algorithms. This implicitly means that the algorithm can deal with
sources of unknown intensity (at least up to some extent).
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Figure 4.28: Results obtained in Webots. The error bars indicate the 95 % confidence interval for
the mean (assuming exponentially distributed data), while the dots stand for results of individual
runs. E: With varying number of particles. F: With varying concentration ceiling. G: With varying
wind sensor noise. Note that the bars for 0.64 m and 1.28 m are omitted because of the low success
rate indicating that the algorithm was clearly not well configured for these environments.
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Figure 4.29: Webots simulation runs of the probabilistic odor source localization algorithm. (a)
The algorithm produces casting, spiraling, and upwind surge, even though none of these behaviors
are explicitly coded. (b) In rare cases, the robot does not manage to turn back to towards the plume
when it loses it. (c) In contrast to the bio-inspired casting algorithm, probabilistic odor source
localization takes into account different concentration levels and corrects its heading before losing
the plume completely. The trajectories of many runs are therefore almost straight. (d) For very
high wind sensor noise, the current implementation of the algorithm produces a lot of irregular
counter-turning and loses the plume after a while.

4.4.4 Real Robots

We finally carried out real-robot experiments with the probabilistic odor source localization con-
troller. Again, the same controller was used, except that the real sensors and actuators served as
input to the algorithm. The response of the odor sensor, c(x,y), was thereby converted into hits
using

P(c = 1|x,y) =


0 if c(x,y)−b < 0
c(x,y)−b

pt
if 0 ≤ c(x,y)−b ≤ pt

1 otherwise
(4.29)

In this equation, pt is the concentration ceiling, a free parameter of the algorithm, and b is the
odor concentration baseline. The setup with all parameters was the same as for the bio-inspired
algorithms (see Section 3.2.1), and the results are therefore comparable.

The following experiments were carried out:

Algorithm Particles pt Loop interval t s d
H Probabilistic OSL 1024 4096 131.4 ms 25 cm 10.6 cm/s 5.8 cm/s
H Probabilistic OSL 768 4096 132.5 ms 25 cm 10.6 cm/s 5.8 cm/s
H Probabilistic OSL 512 4096 131.1 ms 25 cm 10.6 cm/s 5.8 cm/s

Each experiment consists of 20 independent runs. In each run, the robot was released in the
odor at a position about 14.5 m downwind from the odor source. If the robot reached the target
area around the odor outlet (determined with the floor sensors), the run was considered success-
ful. During the run, the trajectory (using odometry) and the odor concentration were recorded.
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Table 4.2: Comparison of the settings for the real-robots experiments, the Webots simulations,
and the simulations under the abstract model.

Real robots Webots sim. Abstract sim.
Environment wind tunnel Webots [72] –
Wind ≈ laminar laminar laminar
Plume real, ethanol filaments [7] model
Plume width (w) ≈ 35 cm 35.4 cm 50 cm (end-to-end)
Robot Khepera III Khepera III point
Locomotion diff.-drive diff.-drive diff.-drive
Mean speed (s) 10.6 cm/s 10.6 cm/s 10.6 cm/s
Odometry good perfect perfect
Particles 1024 1024 1024
Loop interval ≈ 132 ms 128 ms 128 ms
Target distance (t) 25 cm 25 cm 25 cm
Target differential (s) 5.8 cm/s 5.8 cm/s 5.8 cm/s
Wind sensor error non-Gaussian N(0,(10 ◦)2) U(−11.25 ◦,11.25 ◦)
Odor sensor error negligible Gaussian, small 0
Odor sensor delay t90% ≈ 0.1 s none none

Distance and upwind distance were derived from the trajectory, and the duration of each run was
measured on a host computer. The forward speed of the robot (on straight lines) was 10.6 cm/s
and therefore same as for the experiments with the bio-inspired algorithms in Section 3.2. The
loop interval was adjusted to approximately 132 ms by inserting waiting times. With 1024 par-
ticles, this corresponds to roughly 80 % CPU utilization of the ARM processor on the KoreBot,
while with 512 particles, the CPU utilization is about 50 %. A good value for pt was determined
experimentally with a few initial runs, while b was measured in clean air (inside the wind tunnel)
before each run.

The results are plotted in Figure 4.30, and Figure 4.31 depicts the trajectories of 2 selected
runs. As compared to the simulation results, the distance overhead and the success rate are slightly
worse. But with only 8 % distance overhead when using 1024 particles, the algorithm still beats
all bio-inspired algorithms. In addition, some of the runs were almost optimal.

Fewer particles lead to significantly worse performance, however. In particular, chances are
much higher that the robot is engaged in an expensive plume reacquisition behavior during then
run, and only few quasi-optimal runs (with distance overheads below 1.05) are observed.

Reasons for the performance drop as compared to the simulation results are two-fold: First,
the error distribution of the wind sensor board is not nicely Gaussian, as this was the case in
the simulation. (The error distribution over all wind angles is approximately Gaussian, but for a
specific angle, it tends to be biased towards specific values.) Second, the odometry in both the
point simulation and the Webots simulation was perfect, while with the real-robot results, there
was an angular error of a few degrees over the whole trajectory, mostly due to a not perfectly flat
floor. Since the algorithm automatically forgets old measurements, this does not matter too much,
but still has some influence. In particular, the robot tends to go towards the plume borders more
often than with perfect odometry.
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Figure 4.30: Results obtained with the real robots for varying number of particles. The error
bars indicate the 95 % confidence interval for the mean (assuming exponentially distributed data),
while the dots stand for results of individual runs.

0 2 4 6 8 10 12 14

−2

−1

0

1

2

Start

Odor
outlet

Probabilistic OSL, 1024 particles (114.8 s, 16.2 m)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

0 2 4 6 8 10 12 14

−2

−1

0

1

2

Start

Odor
outlet

Probabilistic OSL, 1024 particles (108.5 s, 15.3 m)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

Figure 4.31: Two successful real robot runs of the probabilistic odor source localization algo-
rithm. The trajectories look similar as those obtained in simulation.
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4.4.5 Similarity to Insect Trajectories

Interestingly, the trajectories produced by this probabilistic algorithm look astonishingly similar
to plume tracking trajectories of insects [48] [47] [46]. Upwind-surge, spiraling and casting can
be observed, even though none of these behaviors has been explicitly coded into the algorithm. A
similar correspondence has previously been found with the infotaxis algorithm [30] where agents
were moving on a rectangular lattice.

What is striking here, however, is that the shape and irregularity of the trajectories is very
similar to their biological counterparts. Not only pure and nice spiraling is observed, but a variety
of irregularities that can be either interpreted as casting or as spiraling.

Naturally, the question arises of whether insects are using a probabilistic strategy as well. The
strategy of insects has evolved over millions of years with a significant evolutionary pressure. As
plume tracking is used for food scavenging and mating, individuals with better strategies had a
tremendous advantage and therefore a higher survival and reproduction rate. Hence, insect plume
tracking strategies observed can be assumed to be nearly optimal (for their environments and
intents). The probabilistic model is greedy-optimal, and the experiments above show that it yields
almost optimal performance in our environment. This match does not prove anything, but at least
provide another correspondence between probabilistic plume tracking and trajectories observed in
nature.

Regarding the complexity of an algorithm implementing the probabilistic model, we have
shown that there exist efficient implementations with relatively low computational requirements.
Our implementation here is able to track a plume with only a few 10’000 operations — mainly
additions and multiplications — per loop iteration, or a few 100’000 operations per second. A
honeybee with its 950’000 neurons [88], for instance, would have enough neurons to implement
such an algorithm. As plume tracking is one of the most crucial behaviors for survival, it would
not be surprising if a substantial fraction of these neurons were dedicated to it. In addition, an
implementation based on particles can be implemented in a parallel fashion, and is robust with
respect to small differences in the implementation of each particle. In other words, if the neuronal
circuitry of one particle consistently fires higher than another, this would not make a substantial
difference to the final behavior.

In addition, the sensory input of many insects is similar to the one of our robot. Besides odor
concentration and wind direction, insects such as honeybees rely on optical flow [89] for motion
estimation, a technique which provides information similar to wheel odometry.

Despite the striking similarity of the trajectories, none of these arguments serves as a proof that
insects are using a probabilistic approach for odor source localization. They only underline that
this may be possible regarding sensory input information and algorithmic complexity. But even
if this was the case, an implementation with neurons would obviously be vastly different from
a CPU-based implementation. In addition, insects are flying in a 3D space, whereas our robotic
experiments were carried out in a 2D arena.

4.5 Summary and Conclusion

In this chapter, we have discussed two different implementations of the same probabilistic model.
The map-centric implementation is based on a centralized architecture and relies on perfect ab-
solute localization and global communication among all robots and nodes. The approach is com-
pletely different from the bio-inspired algorithms presented in Chapter 3. While bio-inspired
algorithms are lightweight and based on minimal information about the environment, this imple-
mentation of the probabilistic model is CPU and memory intensive, and suitable for combination
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with other subsystems on a mobile robot (e. g., path planner, map of the environment). The algo-
rithm runs at reasonable speed on nowadays desktop or laptop computers (≈ 40’000 MIPS), but is
too CPU intensive for current embedded systems (≈ 400 MIPS).

The second implementation is a lightweight robot-centric implementation using only short-
term motion estimation with wheel odometry. With a number of simplifications and approxi-
mations, the execution time was drastically reduced, allowing it to be run on small embedded
platforms. The plume model is kept very simple, for example, and the path planner is very ba-
sic, too. In contrast to the bio-inspired algorithms, however, this algorithm is able to cope with
perturbations because it keeps track of the actual motion of the robot over short distances. Runs
with this algorithm have shown stunning similarity with trajectories of real insects, even though
no bio-inspired behavior is explicitly coded into the algorithm.

The probabilistic model introduced at the beginning of the chapter is a very general and flexible
model from which odor source localization algorithms can be derived. It is mathematically concise
and complete and specifies all that is needed to design an odor source localization algorithm. The
model itself is not an algorithm, however.

How to derive a suitable algorithm (and implementation) from it heavily depends on the exact
problem, the environment and the available hardware resources (CPU, memory, sensors, and actu-
ators). Such considerations will determine how the source state probability distribution should be
approximated, what an observation looks like, and which target positions are evaluated. Alongside
with this, the system designer will have to think about communication among robots (in the case
of multi-robot systems), available information about the environment (e. g., maps), and possibly
even interfaces with human investigators.

This may sound like a complex task leaving a huge amount of choices — and it certainly is.
But a major advantage of probabilistic models is that they actually make it possible to do all that,
and even provide a mathematical description for it. In addition, probabilistic models for different
tasks of a mobile robot can be combined at model level, even if the individual parts share very
little in common. Algorithms can then be designed to implement the complete model, which is
often easier than designing individual algorithms and make them work together.

This probabilistic approach to odor source localization is therefore a very promising direction
which might be a suitable choice for many potential odor source localization applications.
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Experiments with the multi-robot versions of the bio-inspired algorithms (see Section 3.5) revealed
that robots are competing for space even when they are communicating and collaborating. When
robots avoid each other (to prevent collisions), they often lose the plume and switch to plume
reacquisition, which obviously results in bad performance. Reasons for this are the state-machine
nature of the bio-inspired algorithms on one hand, but also the fact that robots do not plan their
path with respect to the positions of the other robots. The low-level controller (obstacle avoidance)
interferes with the high-level controller (bio-inspired odor source localization algorithm).

With probabilistic algorithms, on the other hand, one can easily integrate collision avoidance
constraints into the high-level controller. In addition, experiments revealed that robots would
optimally explore the plume boundary to infer the location of the source, and not try to locally
maximize the odor concentration. However, the computational cost of these algorithms is much
higher as compared to the bio-inspired algorithms.

This brought us to the idea of designing a simple multi-robot algorithm to do boundary explo-
ration. The robots should thereby be aware of each other’s location, such that low-level obstacle
avoidance does not interfere with the odor source localization algorithm.

We came up with such an algorithm based on a crosswind line formation and tested it in the
same wind tunnel environment in which we previously tested the bio-inspired and probabilistic
algorithms. In the remainder of this chapter, we describe the algorithm and the experiments we
carried out with real robots. Note that this whole chapter is only concerned with the odor source
localization aspects of these algorithms. We do not attempt to optimize formation aspects, or
reduce the communication overhead.

5.1 The Crosswind Formation Algorithm

The underlying idea of the algorithm is to keep some robots on the left side of the plume, and some
robots on the right side of the plume. While they are going upwind, they try to stay centered in the
plume, i. e., keep the (average) concentrations on the left and on the right approximately equal.

With the present algorithm, the robots are kept on a line in crosswind direction and share their
measured concentration as well as their position with all other robots in the formation. As the
robots do not use any global reference system, they only know their locations relative to each
other.

In a reference system defined by the wind direction, each robot calculates a (virtual) crosswind
and a (virtual) upwind force, as depicted in Figure 5.1. The upwind force, fu is

fu = u+
1
N ∑

i
yi (5.1)

where N denotes the number of robots and u the constant upwind drag, a parameter of the algo-
rithm. fu keeps the robot aligned with the other robots, such that they all have approximately the
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Figure 5.1: Sketch of the formation algorithm from the perspective of robot 3. Calculation of the
forces fu and fc is carried out in a reference system defined by the wind direction. The resulting
force vector is then rotated into the robot’s reference system. All robots carry out the exact same
calculation, but from their own perspective.

same downwind distance from the odor source. If, for instance, one robot is behind, the yi tend to
be more positive in the coordinate system of this robot and the resulting force is stronger.

The crosswind force, fc, is a weighted difference (with weights a and r) between an attractive
and a repulsive force. Formally,

fc = a fa− r fr (5.2)

fa = ∑i xici

∑i ci
(5.3)

fr =
1
N ∑

i,i6=me

1
xi

(5.4)

The attractive force, fa, takes into account the odor concentrations, ci, measured by all other
robots and is responsible for keeping the formation centered in the plume. Robots measuring
a high concentration contribute more weight, and therefore pull the other robots towards them.
The system is in equilibrium state if the robots on the left and on the right measure the same
concentrations. The repulsive force, fr, keeps the robot at a certain distance from all other robots.

The vector ( fu, fc) is then rotated into the reference system defined by the robots heading,

fv = fu cos(−α)− fc sin(−α) (5.5)

fh = fu sin(−α)+ fc cos(−α) (5.6)

where α denotes the wind angle relative to the robots heading. The resulting vector ( fv, fh) is
finally transformed into differential drive wheel speeds as follows:

sl = s(kv fv + kh fh) (5.7)

sr = s(kv fv− kh fh) (5.8)
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Figure 5.2: Crosswind and upwind forces (scaled) for different positions of robot 2 in a formation
with 3 robots. Robot 1 is currently measuring a 4 times higher concentration as compared to robot
3. The gray shading stands for the odor concentration, which attains its maximum at x =−0.5 m.

kv and kh are thereby factors to scale the forward and differential speed appropriately, and s denotes
the mean forward speed.

All robots keep executing these steps continuously in a loop. In each iteration of the loop, a
robot takes one measurement with the wind direction sensor and one with the odor sensor, and
broadcasts the latter to all other robots. To calculate the forces, it uses the last received odor
concentration and relative position values of each robot.

5.2 Experiments with 3 and 5 Robots

We tested the algorithm with real robots in the wind tunnel in the following settings:

Algorithm Robots Start position Runs
A Formation OSL 3 left 10
B Formation OSL 3 middle 10
C Formation OSL 3 right 10
D Formation OSL 5 middle 5

The experimental setup in the wind tunnel was thereby the same as with the bio-inspired and
probabilistic algorithms. Relative positions were emulated using the camera system and sent to
the robots via wireless LAN at a 10 Hz update rate. With the start position left (resp. right), the
robots started slightly at the left (resp. right) of the plume, and only the rightmost (resp. leftmost)
robot was measuring an above-baseline odor concentration. With the start position middle, one
robot was placed in the plume center at the beginning of the experiment, while an equal number
of robots started on the left and on the right of the plume. The mean forward speed of the robots
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Figure 5.3: Real-robot trajectories produced by crosswind formation algorithm. The gray rect-
angle represents the target area with the odor source while the black circles denote the starting
positions of the robots. The robots go almost straight upwind towards the source, yielding very
low distance overheads and high success rates.

was s = 7.1 cm/s, and the parameters of the force model were set as follows:

u = 1

a = 1

r =
{

0.1225 for the experiments with 3 robots
0.4225 for the experiments with 5 robots

kv = 1

kh = 1

Note that no attempt was made to systematically optimize these parameters, as the main objective
is to demonstrate odor source localization using formations, and not formation control itself.

Before each run, the odor concentration baseline was determined individually for each robot
by taking a few measurement samples in fresh air. The sensitivities of the odor sensors were not
systematically calibrated, but believed to be approximately the same. Slight sensitivity differ-
ences would result in a little drift of the formation in crosswind direction, but hardly affect the
performance.

Figure 5.3 shows one run of each setting. No matter where the robots started, the robots found
the center of the plume within the first 2 m upwind distance and then continued going straight
upwind. The distance overheads are therefore extremely low, as shown in Figure 5.4. The success
rate was 100 % in all settings.

In our setup, this algorithm clearly outperforms all bio-inspired and probabilistic algorithms
discussed in Chapters 3 and 4 in terms of distance overhead and success rate. The distance over-
head for most runs was below 2 %, and for some runs even below 1 %. Included in this overhead is
the initial phase in which robots get into the predefined formation shape. Without this, the results
would be even closer to the optimal performance.

This is not surprising: with sensors on the left and on the right of the plume, the formation
obtains direct feedback about its position with respect to the plume, and can correct for that long
before leaving the plume completely. A plume reacquisition phase, as it is used with the bio-
inspired algorithms (Chapter 3) and also observed with the robot-centric implementation of the
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Figure 5.4: Distance overheads (by starting position) of the experiments with three robots. The
dots stand for the distance overhead of the robots in individual runs, and are classified by the
robot’s position in the formation. The bars indicate the mean distance overhead over all runs and
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Figure 5.5: Real-robot trajectories produced by the crosswind formation algorithm tracking a
source moving in crosswind direction. The gray rectangle represents the target area with the odor
source while the black circles denote the starting positions of the robots. The robots nicely follow
the movement of the plume.

probabilistic model (Section 4.4), is not necessary any more. The robots keep going upwind
without ever losing the plume.

Using 5 instead of 3 robots did not improve the performance in our experiments. There is no
a priori reason for which 5 robots should yield worse results. After all, 5 robots collect even more
information about the plume than 3 robots, and should therefore do at least an equally good job.
However, the information gain when switching from 3 to 5 robots might be tiny, and therefore
irrelevant in our setup. Main reason for the performance drop here are presumable the outermost
robots, which started at a suboptimal position quite far away from the plume center, and first had
to move closer to the center. We believe, however, that increasing the number of robots would be
advantageous in settings with a sparser plume.
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5.3 Experiments with a Moving Source

Since this algorithm measures the odor concentration at several points at the same time, it is
particularly well suited for scenarios with moving sources. With a single sensor, an algorithm is
unable to tell with a single measurement in which direction the source moved. Such information
can only be deduced from multiple (sequential or parallel) measurements at different locations.

Multi-robot algorithms provide just this: taking several measurements at the same time. This
allows the formation to know immediately whether the source moved towards the left or towards
the right. The force model takes advantage of that information in that it tries to keep the robots
centered around the plume.

We carried out 5 runs with the same algorithm tracking a moving source. The source was
thereby moved back and forth by 92 cm in crosswind direction at constant speed. All other param-
eters of the setup and the algorithm were kept the same. Two of these runs are drawn in Figure 5.5.
While all runs were successful, it is not possible to calculate the distance overhead (in the way it
is defined in Section 1.11) in this case. The trajectories however reveal that the algorithm works
fine.

5.4 Summary and Conclusion

In this short chapter, we presented the crosswind formation algorithm, an odor source localization
algorithm which is inherently designed for multi-robot systems. In its present form, the algorithm
requires at least 2 robots to collaborate. Experiments were carried out with 3 and 5 real robots, and
showed that this algorithm achieves close-to-optimal performance in terms of distance overhead
and success rate. We also demonstrated the algorithm’s robustness in a scenario with a moving
source.

The crosswind formation algorithm is barely more complex than the bio-inspired algorithms,
but in no way inspired by them. Instead, it is based on standard engineering principles, with some
inspiration from the boundary exploration behavior observed with the probabilistic algorithms.

Whether robotic teams moving in formations are suitable for the all applications of odor source
localization (see Chapter 1) is questionable. In applications that do not require the full flexibility of
a multi-robot system, using multiple sensors on the same robot may however yield an interesting
performance advantage for a comparatively little price (design, hardware, deployment). If — like
the robots here — these sensors are spaced by about half the plume width, a similar algorithm
could be implemented and used on a single robot.
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In the last three chapters, we discussed three different classes of algorithms for odor source lo-
calization. In Chapter 3, we presented three bio-inspired algorithms, namely casting, surge-spiral
and surge-cast. Chapter 4 discussed two vastly different implementations of a probabilistic model
for odor source localization, and in Chapter 5, we finally introduced an algorithm based on forma-
tions, which is inherently designed for multi-robot systems.

Table 6.1 shows a side-by-side comparison of different properties of the 6 algorithms studied
in this thesis, and summarizes their results. Let us discuss this table from top to bottom.

Apart from the casting algorithm, which we consider an incomplete odor source localization
strategy, all algorithms yield a decent performance in laminar flow. With its 2 % distance overhead
and 100 % success rate, the formation algorithm is clearly the winner. The probabilistic algorithms
are just slightly better than the bio-inspired algorithms — a difference which won’t be important
in most applications — and the success rate of all algorithms was above 90 % given that they were
properly configured.

Note that these performance values provide a good guideline for the performance to expect in
a laminar flow scenario without meandering or obstacles. Since this scenario is very basic, one
may however argue that these values are too optimistic for any realistic application. Indeed, the
raw values should be taken with a grain of salt and understood as the achievable performance in a
simple environment, or a “soft upper bound” on the performance.

For the bio-inspired algorithms, we carried out a number of real-robot experiments with obsta-
cles and turbulent flow, and concluded that such challenges affect the algorithms very differently.
While the surge-spiral algorithm was able to locate the source with a higher distance overhead,
the casting algorithm failed completely. Hence, there is no general rule for transforming the raw
performance values obtained in laminar flow to more sophisticated scenarios, and certainly a sub-
stantial amount of research left to be done.

The raw performance values however helped us to assess a number of other properties of the
algorithms. In Section 3.5, for instance, we discovered through experiments that the bio-inspired
algorithms do not perform well when using multiple robots. As robots are physically competing
for space, only a small part of the statistical advantage can be recuperated, and collaboration was
found to be a double-edged sword. The use of the moth-inspired algorithms tested in this thesis
for plume tracking in a multi-robot system is therefore not recommended.

The opposite is true for the map-centric implementation of the probabilistic model for odor
source localization. The use of multiple robots does increase the performance significantly here,
and the additional CPU and memory requirements for that are moderate. The robot-centric imple-
mentation of the same probabilistic model is again a single-robot algorithm by design, even if the
use of multiple sensors (spaced by not more than about 20 cm) would easily be possible.

The crosswind formation odor source localization algorithm finally is inherently for multi-
robot systems, and would not work at all when using a single robot only.

One of the most pertinent differences between the algorithms lies in their computational re-
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Table 6.1: Comparison of the algorithms presented in the previous chapters. The performance
values (distance overhead and success rate) are approximate values based on the real-robot ex-
periments in laminar flow and a holistic assessment.
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quirements1. In particular, the probabilistic algorithms have a several orders of magnitude higher
demand for computational power and memory. The reasons for that are to a large extent intrinsic
to the approach:

. The bio-inspired algorithms are implemented as state machines with two states, whereby
state transitions are based on concentration measurements and timeouts. The source code
for such a state machine is only about 10 lines long, and straightforward to implement. Apart
from conditioning the input signals (odor concentration and wind direction), only counters
and thresholds are necessary to run the state machine and decide upon state transitions, and
the state information consists of a few numbers only (counters and current state).

. The crosswind formation algorithm is similarly straightforward to implement. This algo-
rithm is inclined towards control theory: in each loop iteration, it calculates the wheel speed
values based on the input values using a predefined formula. The system is thereby smoothly
guided towards its optimal state, but perturbed by sensor and actuator noise. The force
model employed here requires basic math operations (addition, subtraction, multiplication,
division, sin and cos) only, and a small amount of memory to store the measurements com-
municated by the other team members.

. Implementing the probabilistic algorithms is far more challenging. The core part consists of
several hundred lines of source code and requires careful data structure design, especially
for multi-step-ahead evaluation. Each high-level operation on the source probability distri-
bution results in thousands of multiplications and additions, and the evaluation of a single
target consists of several such operations. In addition, the state is a probability distribution
amounting to a few kilobytes of data. In the map-based implementation, a big chunk of
memory is required for the plume model used for the train station scenario. Such entirely
data-driven models can easily amount to gigabytes of data.

Despite the big differences, none of the algorithms is outside of what is achievable on current
off-the-shelf computers. Prices for computational power in this order of magnitude are low, but
a question that remains is that of energy. As mobile robots are most often running on batteries
(or other energy sources with a fairly limited capacity), energy is a precious resource. The main
question thereby is how the energy required for computation compares to the total energy budget.

As an example, let us compare the surge-spiral algorithm with the robot-centric implemen-
tation of the probabilistic model. On the Khepera III platform with the Korebot, computation at
maximum CPU load accounts for about 5 % of the total energy budget of the robot. Hence, the
surge-spiral algorithm burns about 5 % less energy on that. The difference in distance overhead
between the two algorithms is also about 5 %, but in favor of the probabilistic algorithm. Hence,
the two algorithms are energy-wise approximately equal for plume tracking. If the success rate
is considered as well, the surge-spiral algorithm is about 10 % more efficient. One may further
argue, however, that the probabilistic algorithm will be able to tell the location of the source before
reaching it, and thereby save energy.

Another significant difference between the algorithms is the information they need (or con-
sider) throughout the plume tracking process. The bio-inspired algorithms are based on odor and
wind information only. No positioning information is taken into account by the state machine.
(Depending on the implementation, wheel encoder feedback may be used to turn by a given angle,
or move forwards for a given distance.) The formation algorithm is similar in that respect, but
each robot needs to know the current positions of the other robots relative to its own pose.

1The numbers provided in Table 6.1 are orders of magnitude for running the algorithm at reasonable speed in a
moderately complex scenario.
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The probabilistic algorithms offer substantial flexibility with respect to the information they
process. Our robot-centric implementation is comparable to the bio-inspired algorithms, except
that it uses wheel odometry to infer its movement. This is very precise over short distances, and
as the algorithm anyway forgets old information, error accumulation (which is unavoidable with
odometry) does not harm the algorithm in any way.

The map-centric implementation works with a much larger set of information. In the train
station scenario, it combines the actual measurements with pre-calculated plume propagation in-
formation to come up with a belief of the odor source location. The decision step is based on a
map of the environment, and assumes that all robots can localize themselves accurately on this
map.

Any odor source localization algorithm makes some assumptions about the plume. The weak-
est assumption is made by the bio-inspired and formation algorithms, which are only based on the
fact that odor filaments are mainly transported by advection. This assumptions does not explicitly
appear anywhere in the algorithm, but is implicitly assumed to hold. The probabilistic model, on
the other hand, requires the plume model to be explicitly defined. Even if this may sound like an
additional hassle at first sight, it allows for much more flexibility.

The probabilistic algorithms are therefore applicable to almost any type of environment, given
that the right plume model is used. In the train station scenario, for example, there are zones with
a strong main wind flow and zones with mostly turbulence or whirlwind. All this is captured by
the plume model, which allows the robot to take the right decision in all zones.

The bio-inspired algorithms are generally not capable of doing this. The surge-spiral algorithm
is an exception because the spiraling part can recover from almost any situation. The upwind surge
part however is useless in scenarios without a clear main wind flow, and the performance of the
algorithm suffers substantially (see Section 3.4). Similarly, the crosswind formation algorithm
was not designed with turbulence or obstacles in mind, and its performance in such conditions is
expected to be bad.

This is not to say that there are no computationally cheap algorithms for environments with a
high degree of turbulence (i. e., without a main wind flow), and/or with obstacles. But we did not
study any such algorithm throughout this thesis.

Finally, probabilistic algorithms offer a lot of flexibility for integration with other subsystems
typically employed on a mobile robot, as we discussed in Section 4.3.
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7 Conclusion

In this thesis, we evaluated and compared 6 odor source localization algorithms for mobile robots.
Three algorithms are bio-inspired and imitating the behavior of moths. We tested these algorithms
with real robots in a wind tunnel as well as in simulation, and derived their expected performance
through a theoretical model. We also studied multi-robot versions of these algorithms. Two algo-
rithms are implementations of a general probabilistic model for odor source localization, which
we introduced in this thesis. Both algorithms combine observations (i. e., concentration measure-
ments) through probabilistic filtering using a plume model, and thereby calculate a belief for the
location of the odor source. In spite of the algorithms both implementing the same probabilistic
model, their implementation is vastly different. While the map-centric implementation features
path planning around obstacles, multi-step-ahead evaluation and a completely data-driven plume
model, the robot-centric implementation is lightweight with respect to CPU and memory usage.
Both implementations were evaluated through simulations, and the latter was also deployed on the
real robots in the wind tunnel. The last of the 6 algorithms we studied is based on a crosswind
formation, and inherently designed for multi-robot systems.

All experiments with the real robots were carried out with Khepera III robots in an 18 m long
wind tunnel, and hence in a systematic environment under repeatable and measurable conditions.
The main performance indicators we studied were the distance overhead (which stands in direct
relationship with the speed of an algorithm) and the success rate, both of which are applicable to
all algorithms. The results are therefore directly comparable. A number of experiments were also
carried out in various simulation environments at different abstraction levels. The bio-inspired
algorithms as well as the robot-centric implementation of the probabilistic model were tested in
Webots (robotic simulator) with simulated Khepera III robots moving through a plume simulated
using filaments. The setup was thereby closely matched to the setup in the wind tunnel, allowing
us to compare the results to those obtained with the real robots. Other experiments were carried
out using dedicated body-less simulations at higher abstraction levels, and under simple plume
propagation models.

The algorithms were in general evaluated in an environment with a laminar flow. For the bio-
inspired surge-spiral algorithm, we additionally carried out real-robot experiments in turbulent
flow and with obstacles, and the map-centric implementation of the probabilistic odor source lo-
calization model was demonstrated to work in complicated (but known) flow conditions by means
of simulation experiments.

The analysis of the results obtained through these experiments allowed us to characterize the
performance of the algorithms, as well as their strengths and weaknesses. A (technical) side-by-
side comparison of all six algorithms was shown and discussed in Chapter 6.

For the odor source localization research field, a number of conclusions can be drawn from
our results.

One of our first observations was that pure (bio-inspired) casting, which was very prominent in
the scientific literature before 2006, does not perform well. The algorithm is comparatively slow
in simple laminar flow, and — since it heavily relies on accurate wind direction measurements
— unable to find the source in turbulent flow. We believe that this strategy is incomplete when
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used alone, and findings in behavioral biology confirm that insects use casting in combination with
other strategies. This may look like a relatively simple observation, but is actually an important
one, given the number of scientific publications that promote pure casting or variations of it.

Second, the class of probabilistic algorithms, which only appeared in the last few years and to
which we greatly contribute with this thesis, looks very promising. With the train station scenario
in Section 4.3, we demonstrated the flexibility of such a probabilistic model for odor source lo-
calization. To our knowledge, no previous work on odor source localization algorithms addressed
scenarios this complex, and despite our simulations were carried out at a relatively high abstrac-
tion level, we are convinced that this is the right approach to find odor sources in environments for
which a lot of information (maps, wind flow, plume propagation, . . . ) is available.

Third, we discovered an interesting similarity between insect trajectories and trajectories pro-
duced by the robot-centric implementation of the probabilistic model. It is certainly too early to
make bold statements, but should our hypothesis discussed in Section 4.4.5 turn out to be true,
this would not only be a significant results for behavioral biologists, but also raise questions about
what we currently call “bio-inspired”. Indeed, of the six algorithms tested in this thesis, the robot-
centric implementation of the probabilistic model best imitates moths — much better than the
algorithms dubbed “inspired by the behavior of moths”. Just by looking at the number of neurons
of even fruit flies (approximately 50’000), which are definitely not among the most sophisticated
insects, it is perhaps even a bit pretentious towards nature to put the label “bio-inspired” onto al-
gorithms consisting of two deterministic states and simple state transitions. (Nevertheless, we did
it in this thesis as well.)

Finally, our experiments clearly indicate that multi-robot algorithms can be extremely fast and
robust when properly designed. Such algorithms thereby do not need to be complicated, as the
crosswind formation algorithm shows. This algorithm was designed from scratch for a multi-
robot system, and is based on well-known engineering concepts (mainly from control theory)
rather than inspired by observations in nature1. The probabilistic model is straightforward to
extend to multiple robots as well (see Section 4.1.2.4), and has been demonstrated to improve the
performance of algorithms with respect to comparable single-robot configurations.

In our opinion, and based on the results and observations made throughout this thesis, trying
to forcefully extend the bio-inspired algorithms to multiple robots is a dead end, however. These
algorithms are not able to cope with disturbances (see Section 3.6) and therefore inherently suitable
for single-robot systems only. Even if a marginal gain can be obtained by using multiple robots,
we demonstrated that there are much better approaches to design multi-robot algorithms for odor
source localization. One may of course argue that sophisticated collaboration schemes may be
able overcome all shortcomings, and one may even classify the crosswind formation algorithm as
a bio-inspired algorithm, as it is clearly based on upwind surge. This, however, is a question of
semantics and classification.

7.1 The Robots vs. The Dogs

In the introduction, we stated that the ultimate goal of research on odor source localization is
to replace animals — most notably dogs — by mobile robots for such tasks. We mentioned a
number of potential applications in the introduction (Chapter 1), and stated advantages of using
autonomous mobile robots instead of animals. So how does the current state of the art in odor
source localization (including the results presented in this thesis) compare to dogs?

1This is not to say that similar algorithms do not exist in nature, of course.
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More as a recreational activity, we once took two trained dogs into the wind tunnel and let them
search for an odor source in a similar setup as the robots did. The wind tunnel was configured with
the same laminar wind flow at a speed of 1 m/s, but instead of using ethanol, we hid a piece of
meat close to the wind inlet2. In each run, one of the two dogs was let loose about 15 m downwind
from that place.

The result was amazing and, to be honest, quite discouraging with regard to our real robot
experiments: it rarely took a dog more than 5 seconds to reach the source. They were basically
running straight towards it, despite the fact that they could not see it. From time to time, one could
observe them moving their head a bit left or right in order to keep track of the plume, but they
hardly slowed down for that. It is needless to say that their success rate was 100 % over about 20
runs. Moreover, the dogs got bored after a while — the task was simply too easy for them, their
holder told us smilingly.

With the best odor source localization algorithms, our robot found the source within about
140 seconds. One may of course argue that our Khepera III robot with its maximum speed of
about 30 cm/s is simply too slow to be competitive with dogs, and it is true that the robot and
the chemical sensor we used for our experiments are not among the top products available on the
market. Nevertheless, even with the latest sensor technology and the most agile mobile platform
available, we could most probably not have come close to the dogs’ performance.

A more relevant question with respect to this thesis, however, is whether our algorithms could
compete with the processing that is going on in a dog’s brain (at least in our wind tunnel scenario).
Hence, let us assume we have a robotic platform and a chemical sensor comparable to a dog and
its nose.

When looking at the distance overhead obtained with the robot-centric implementation of the
probabilistic model, one would say that we are competitive. We obtained a mean distance overhead
of 8 % with the real robots, and less than 2 % in simulation. The distance overhead of a dogs’
nose when taking into account the occasional left-and-right sweeps was presumably in the 1 – 2 %
range as well. But this alone is not an entirely fair comparison. At the forward speed of a dog,
our algorithm would have to run about 50 times faster and thereby take 50 times more samples
as well. Getting enough computational power for that is certainly not a problem, but whether the
algorithm works at such speeds remains yet to be demonstrated.

Since dogs are using vision and their memory as well, they certainly use a much more com-
plex representation of the environment in the brain. Hence, the processing going on in a dog’s
brain could be closer to the map-centric implementation of the probabilistic model (which inte-
grates room geometry and a more complex plume propagation model), but is likely to be orders of
magnitude more sophisticated with regard to the integration of supplementary information.

Fortunately, many industrial applications do not need odor source localization algorithms that
are as sophisticated as those used by animals, and a mobile platform to track down a gas leak in a
simple environment, for example, could even be built nowadays.

7.2 Outlook and Future Work

As the comparison with the dogs shows, odor source localization is still in its infancy, and a lot of
research remains to be done to enable more sophisticated applications.

In our opinion, the focus of odor source localization should move away from bio-inspiration
in the way “bio-inspiration” is currently understood by the research community (i. e., simple algo-

2Since dogs remember the location of the meat from one run to the next, we moved it to a different place in each
run.
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rithms based on state machines). The research community has learned a lot from trying to imitate
insect trajectories, but these algorithms have limitations that will hinder them from being success-
fully used applications later on. This obviously does not mean that these algorithm are completely
useless, and algorithms such as the surge-spiral algorithm may still jump in whenever a simple
and robust plume tracking algorithm is needed in a simple setting. But judging by our experience,
they will only play an anecdotal underpart in the future.

Nevertheless, the design of simple single-robot and multi-robot odor source localization algo-
rithms should still be pushed forwards. Such algorithms could be inspired by more complicated
approaches, such as the probabilistic model, or simply be based on standard engineering princi-
ples. An interesting direction here would be to design algorithms which focus on exploring the
plume boundary, as most information about the source is located there.

A topic that definitely deserves more attention is the probabilistic approach to odor source
localization. On a number of issues, we only scratched the surface and left a closer investigation
to future work:

. A fundamental part of any probabilistic odor source localization algorithm is the plume
propagation model. In the train station scenario in Section 4.3, we used a completely data
driven model for plume propagation which we created using CFD and filament-based plume
simulations with arbitrary constraints and parameters. Setting up an appropriate model for
a given environment is not that simple, however, and systematic methods for that have yet
to be presented, perhaps based on existing work on plume mapping, plume propagation and
wind flow modeling.

. Similarly, the impact of the accuracy and specificity of a plume propagation model on the
performance of a probabilistic algorithm should be studied. (How much does an algorithm
suffer from inaccuracies in the plume propagation model?) Along with that, malicious be-
havior may be studied. (Can an attacker deliberately modify the wind flow to prevent his
bomb from being detected?)

. The problem of multiple sources has been stated in Section 4.1.2.5, but is hardly tractable
in its current formulation. Future work could suggest solutions to overcome this problem,
or study the possibility of tracking down one source after the other.

. The problem of contaminating sources, mentioned in Section 4.1.2.6, needs experimental
validation.

. The idea of combining the probabilistic odor source localization model with probabilistic
simultaneous (self-)localization and mapping (SLAM) has only been crudely outlined in
Section 4.1.2.9. We believe that such a model — if computationally tractable — could be
key for many future applications of odor source localization. Although the methodology
is clear from the perspective of probabilistic mobile robotics, a significant amount of work
remains to be done until such systems are operable and well understood.

. Another problem that has only been discussed superficially (see Section 4.3.6) is that of
probabilistic area coverage using plume propagation models. While area coverage per se is
a well-studied problem, the inclusion of plume propagation models has not been presented
to date.

. The probabilistic model presented in this thesis (or variations of it) could be implemented in
many more ways than the two presented here. It would not come as a surprise to us to see a
number of optimizations of our implementations, or completely different implementations
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in the future. Different applications (with static or mobile nodes) will call for different
implementations.

. Finally, the issue of integrating human input into the probabilistic model may be tackled.

A very interesting observation we made in our experiments is the similarity of insect trajec-
tories to the trajectories produced by the robot-centric implementation of the probabilistic model,
but our hypothesis formulated in Section 4.4.5 remains to be verified by biologists.

Almost all experiments in this thesis were carried out in laminar wind flow with a static odor
source. Future work could address meandering, higher degrees of turbulence, moving sources,
low intensity sources, or sources that only intermittently emit odors. Such experiments could be
carried out in a systematic manner in the wind tunnel, or validated with simulations.

Besides research on the algorithmic part of odor source localization, a lot of research is also
needed to develop better chemical sensors, and build more agile robotic platforms.

Finally, researchers should not be shy to work towards real applications of odor source local-
ization systems. Although many challenges remain, a number of solutions are available. As a
positive side effect, this would allow the research community to assess the relative importance of
open problems, and perhaps even point out new issues.
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[49] K. A. Justus and R. T. Cardé, “Flight behaviour of males of two moths, cadra cautella and
pectinophora gossypiella, in homogeneous clouds of pheromone,” Physiological Entomol-
ogy, vol. 27, no. 1, pp. 67–75, March 2002.

[50] B. Webb, R. R. Harrison, and M. A. Willis, “Sensorimotor control of navigation in arthropod
and artificial systems,” Arthropod Structure and Development, vol. 33, pp. 301–329, May
2004.

[51] R. A. Russell, Odour Detection by Mobile Robots, ser. World Scientific Series in Robotics
and Intelligent Systems. World Scientific Publishing Company, 1999, vol. 22.

[52] E. Balkovsky and B. I. Shraiman, “Olfactory search at high reynolds number,” PNAS, vol. 99,
no. 20, pp. 12 589–12 593, October 2002.
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