libmip Reference Manual
1.1

Generated by Doxygen 1.3.8

Wed Jun 1 09:19:07 2005

Contents

1 libmip Hierarchical Index 1

1.1

libmip Class Hierarchy 1

2 libmip Class Index

2.1 libmip Class List o o e 3
3 libmip Class Documentation 5
3.1 EventClock Class Reference 5
3.2 EventInterface Class Reference 7
3.3 EventInterfaceList Class Reference 9
3.4 IOInterface Class Reference 11
3.5 IOInterfaceList Class Reference 13
3.6 IOInterfaceSerial Class Reference, 14
3.7 MainLoop Class Reference L 16
3.8 MipBus Class Reference 18
3.9 MipCommand Class Reference 21
3.10 MipDevice Class Reference L 23
3.11 MipLoglInterface Class Reference 29
3.12 MipManager Class Reference 31
3.13 MipMessage Class Reference e 33
3.14 MipRxMessage Class Reference 36
3.15 MipTxMessage Class Reference, 38
3.16 T SysParam Struct Reference 40

Chapter 1

libmip Hierarchical Index

1.1 libmip Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

EventClock o e 5
EventInterface L e 7
MipBus e 18
EventInterfacelist o L 9
IOInterface o L e e 11
IOInterfaceSerial L e 14
MipBus e e e e e 18
IOInterfacelist o e 13
MainLoop o e e e e 16
MipCommand 0 e e e e e e e e e 21
MipDevice o e e e e e 23
MipLogInterface L 29
MipManager 31
MiIipMeSSage o v v i e e e e e e 33
MipRxMessage o oo e 36
MipTxMeSsage v v v i i i e e e e e e e e e 38

T SysParam 40

libmip Hierarchical Index

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

Chapter 2

libmip Class Index

2.1 libmip Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

EventClock (Event clock) e 5
EventInterface (General Event Interface) 7
EventInterfaceList (Implements a linked list for EventInterface(p.7) objets) 9
IOInterface (General IO Interface) 11
IOInterfaceList (Implements a linked list for IOInterface(p.11) objets) 13
IOInterfaceSerial (I0Interface(p.11) for a serial connection) 14
MainLoop (A typical main 100p) L 16
MipBus (Modelsa Mipbus)o ittt 18
MipCommand (MipBus(p. 18) Protocol Command) 21
MipDevice (Models a Mip devicceonaMipbus) 23
MipLogInterface (Receiver of log messages from the MipManager(p. 31) object and

the attached MipBus(p.18) objects) 29
MipManager (Manages a Set of MipBus(p. 18) objects with attached MipDevices) . 31
MipMessage (MipBus(p. 18) Protocol Message) 33
MipRxMessage (MipBus(p. 18) Protocol Receive Message) 36
MipTxMessage (MipBus(p. 18) Protocol Transmit Message) 38

T _SysParam (SysParam struct) 40

libmip Class Index

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

Chapter 3

libmip Class Documentation

3.1 EventClock Class Reference

Event clock.

#include <EventClock.h>

Public Types

o typedef unsigned long long tTime
The datatype for time.

Public Member Functions

e EventClock ()

Constructor.

¢ void Update ()

Sets the time to now.

o unsigned long long GetTime ()

Returns the clock in milliseconds.

e void Report (const std::string &name, std::ostream &out, int ccindent=0) const

Writes a report of this object to the given stream. This is mainly useful for debugging.

3.1.1 Detailed Description

Event clock.
An object of this class is used to model the time reference for the application.

The time reference is updated by the MainLoop(p. 16) when new events (EventInterface(p. 7)
timeout or active IOInterface(p.11) filehandles) need to be dispatched. That means that

6 libmip Class Documentation

all events dispatched in that round perceive the same time (returned by the GetTime()(p.5)
method).

The documentation for this class was generated from the following file:

o EventClock.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.2 EventInterface Class Reference

3.2 EventInterface Class Reference

General Event Interface.
#include <EventInterface.h>

Inheritance diagram for EventInterface::

EventInterface

MipBus

Public Member Functions

¢ EventInterface (EventInterfaceList xevlist)

Constructor.

¢ ~EventInterface ()

Destructor.

o EventInterfaceList + GetEventInterfaceList ()

Returns the EventInterfaceList(p.9) to which this EventInterface belongs to.

¢ EventInterface x GetEventInterfaceNext ()

Returns the next EventInterface in the list.

¢ void DispatchEvent ()
Dispatches the event by calling OnEvent()(p. 7) if necessary.

e virtual void OnEvent ()=0

This is called when the event timer expires.

e void SetNextEvent (int msec)

Sets the next event (usec relative to the current event clock).

e void SetNextEvent Absolute (EventClock::tTime evtime)

Sets the next event (absolute time).

¢ EventClock::tTime GetNextEventTime () const

Returns the time of the next event.

¢ bool HasNextEvent () const

Returns whether the event is active.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

8 libmip Class Documentation

Protected Attributes

¢ EventInterfaceList * mEventInterfaceList
The next EventInterface in the list.

o EventInterface x mEventInterfaceNext
The next EventInterface in the list.

3.2.1 Detailed Description

General Event Interface.
This is an abstract class used to model an event timeout.

An class derived from EventInterface must implement the OnEvent()(p. 7) method. This method
is called whenever the timeout occurs.

The most useful way to set a timeout is by calling the SetNextEvent()(p.7) method. It takes
as argument the number of milliseconds to wait until calling OnEvent()(p.7). Note that the
timeout is cleared when OnEvent is called, i.e. if you want OnEvent to be invoked every 100ms,
you need to call

e SetNextEvent(100)

within the OnEvent()(p. 7) method to set the timeout again.

Alternatively, one may use the SetNextEventAbsolute()(p.7) method to set an absolute time
for the next event.

Note that an EventInterface only holds one timeout at the time. Calling SetNextEvent()(p.7)
or SetNextEventAbsolute()(p. 7) several times will only keep the smallest timeout (the event
closest to now in time). However, you can create several objects derived from EventInterface and
add them to the EventInterfaceList(p.9).

The documentation for this class was generated from the following file:

e EventInterface.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.3 EventInterfaceList Class Reference

3.3 EventInterfaceList Class Reference

Implements a linked list for EventInterface(p.7) objets.

#include <EventInterfaceList.h>

Public Member Functions

¢ EventInterfaceList ()

Constructor.

¢ ~EventInterfaceList ()

Destructor.

e EventClock * GetEventClock () const
Returns the EventClock(p. 5).

e EventInterface + GetEventInterfaceFirst ()

Returns the first EventInterface(p.7) object.

¢ EventInterface x GetEventInterfaceNext (EventInterface xcur)

Returns the nezt EventInterface(p.7) object.

¢ EventClock::tTime GetNextEventTimeout ()

Returns the timeout until the next event.

e void UpdateClock ()
Updates the event clock.

¢ bool AddEventInterface (EventInterface xsif)
Adds an EventInterface(p.7) to the list.

¢ bool RemoveEventInterface (EventInterface xsif)

Removes an EventInterface(p.7) from the list.

e void Report (const std::string &name, std::ostream &out, int ccindent=0) const

Writes a report of this object to the given stream. This is mainly useful for debugging.

Protected Attributes

¢ EventInterface x mEventInterfaceFirst

The first EventInterface(p. 7) object.

¢ EventClock * mEventClock

The event clock. It defines how the program ezperiences the flow of time.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

10 libmip Class Documentation

3.3.1 Detailed Description

Implements a linked list for EventInterface(p.7) objets.

The documentation for this class was generated from the following file:

o EventInterfaceList.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.4 IOInterface Class Reference 11

3.4 1IOInterface Class Reference

General 10 Interface.
#include <IO0Interface.h>

Inheritance diagram for IOInterface::

| |Olnterface |

T

| | OlnterfaceSerial |

T

| MipBus |

Public Member Functions

e IOInterface (IOInterfaceList xiolist)

Constructor.

e ~IOInterface ()

Destructor.

e IOInterfaceList + GetIOInterfaceList ()
Returns the I0InterfaceList(p. 13) to which this IOInterface belongs to.

e IOInterface * GetIOInterfaceNext ()
Returns the next IOInterface in the list.

e virtual void OnInputAvailable ()
(abstract) This is called by the application when the filehandle has become active.

e virtual void OnDataArrival (unsigned char xdata, int len)=0
(abstract) This is called by OnInputAvailable()(p. 11) to process data that arrived.

e virtual void OnClose ()=0
(abstract) This is called when the filehandle is closed.

e virtual bool Send (unsigned char *data, int len)
(abstract) Writes data.

e virtual bool Send (const std::string &str)
(abstract) Writes a string.

¢ int GetFileHandle () const
Returns the file handle.

e int IsOpen () const
Returns whether the I0 is open.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

12 libmip Class Documentation

¢ bool SetInputLogFile (const std::string &file, bool append=true)

Sets the input log file. A copy of all input is saved in this file. If the string is empty, no log is
saved.

e bool SetOutputLogFile (const std::string &file, bool append=true)

Sets the output log file. A copy of all output is saved in this file. If the string is empty, no log is
saved.

Protected Attributes

e IOInterfaceList * mIOInterfaceList
The next I0Interface in the list.

o IOInterface * mIOInterfaceNext
The next I0Interface in the list.

int mFileHandle
The file handle of the open file/device (or -1 if the file/device is closed).

std::ofstream mLogInput

The file where incoming traffic is logged.

std::ofstream mLogOutput
The file where outgoing traffic is logged.

3.4.1 Detailed Description

General 1O Interface.

An IOInterface object is attached to a file handle. The application should invoke OnInputAvailable
whenever the filehandle becomes active. This class then reads the new data and dispatches it.

Data can be sent using the Send()(p. 11) method.

All incoming and outgoing data can be logged to a file using SetInputLogFile()(p.12) and
SetOutputLogFile()(p. 12).

This is an abstract class. You need to overwrite at least the OnDataArrival()(p.11) and the
OnClose()(p-11) methods.

See also:
IOInterfaceSerial(p. 14), IOInterfaceList(p. 13)

The documentation for this class was generated from the following file:

o IOInterface.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.5 IOInterfaceList Class Reference 13

3.5 IOInterfaceList Class Reference

Implements a linked list for IOInterface(p. 11) objets.

#include <IO0InterfaceList.h>

Public Member Functions

e IOInterfaceList ()

Constructor.

IOInterface * GetIOInterfaceFirst ()
Returns the first IOInterface(p. 11) object.

e IOInterface * GetIOInterfaceNext (IOInterface xcur)
Returns the nezt I0Interface(p. 11) object.

bool AddIOInterface (IOInterface xsif)
Adds an IOInterface(p.11) to the list.

e bool RemovelOInterface (IOInterface xsif)
Removes an I0Interface(p. 11) from the list.

void Report (const std::string &name, std::ostream &out, int ccindent=0) const

Writes a report of this object to the given stream. This is mainly useful for debugging.

Protected Attributes

e IOInterface * mIOInterfaceFirst
The first 10Interface(p. 11) object.

3.5.1 Detailed Description

Implements a linked list for IOInterface(p. 11) objets.

The documentation for this class was generated from the following file:

o IOInterfaceList.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

14 libmip Class Documentation

3.6 IOInterfaceSerial Class Reference

IOInterface(p.11) for a serial connection.
#include <IOInterfaceSerial.h>

Inheritance diagram for IOInterfaceSerial::

| IOlnterface |
| |OInterfaceSeria |
| MipBus |
Public Member Functions
¢ IOInterfaceSerial (IOInterfaceList =xiolist, const std:string &device="", int bau-
drate=9600)
Constructor.

e virtual void OnBeforeClose ()
Called before a reset.

e virtual void OnAfterOpen ()
Called after a reset.

e virtual void OnAfterOpenError ()
Called after a reset.

e std:string GetDevice () const

Returns the device.

e int GetBaudRate () const

Returns the baud rate.

e bool GetTermiosLocalMode () const

Returns the termios local mode flags.

¢ void SetDevice (const std:string &device)
Sets the device. The new device is used after the nezt Reopen()(p. 15) or Open()(p.15) call.

e void SetBaudRate (int baudrate)

Sets the baud rate. The new baud rate is used after the nert Reopen()(p. 15) or Open()(p. 15)
call.

e void SetTermiosLocalMode (int mode)

Sets the ICANON flag. The new setting is used after the next Reopen()(p. 15) or Open()(p. 15)
call.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.6 IOInterfaceSerial Class Reference 15

e bool Open ()

Opens the serial port if it is closed. Returns true if the serial port was successfully opened or if
it was open already. Note that calling Open()(p. 15) on an open device won’t do anything. Call
Reopen()(p.15) if you want to close and open it again.

e bool Close ()

Closes the serial port if it is open. Returns true if the serial port was successfully closed or if it
was closed already.

e bool Reopen ()

Closes (if necessary) and opens the serial port. Returns true if the serial port has been opened.

Protected Member Functions

e unsigned long BaudRateConstant (int baudrate)

Converts a baud rate into a baud rate constant.

3.6.1 Detailed Description

IOInterface(p.11) for a serial connection.
This implements an IOInterface(p.11) for a serial port (usually /dev/ttySx).

The documentation for this class was generated from the following file:

o IOInterfaceSerial.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

16 libmip Class Documentation

3.7 MainLoop Class Reference

A typical main loop.
#include <MainLoop.h>

Public Member Functions

¢ MainLoop ()

Constructor.

e ~MainLoop ()

Destructor.

e int Run ()
This executes the main loop until Quit()(p. 16) is called.

e void Quit ()

Leaves the main loop.

¢ void SetExitCode (int code)
Sets the exit code.

e int GetExitCode () const

Returns the exit code.

e virtual void OnlInitialize ()=0

(abstract) This method is called right before entering the main loop.

e virtual void OnTerminate ()=0

(abstract) This method is called right after leaving the main loop.

e virtual void OnBeforeProcessing ()

(abstract) This method is called before the events are processed (after waiting for events).

e virtual void OnAfterProcessing ()

(abstract) This method is called after the events are processed (before waiting for events).

e IOInterfaceList + GetIOInterfaceList () const
Returns the I0InterfaceList(p. 13).

e EventInterfaceList + GetEventInterfaceList () const

Returns the EventInterfaceList(p.9).

¢ void Report (const std::string &name, std::ostream &out, int ccindent=0) const

Writes a report of this object to the given stream. This is mainly useful for debugging.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.7 MainLoop Class Reference 17

Protected Attributes

¢ bool mQuit

Set to true to leave the main loop.

o int mExitCode
The exit code.

e IOInterfaceList * mIOInterfaceList
The I0Interface(p. 11) list.

o EventInterfaceList * mEventInterfaceList

The EventInterface(p.7) list.

3.7.1 Detailed Description

A typical main loop.

This abstract class implements a main loop for a typical application. It listens to all handles of
the attached IOInterfaceList(p.13) and waits for all timeouts of the attached EventInterface-
List(p.9).

To use this class, derive your main application class from it and overwrite the methods On-
Initialize()(p. 16) and OnTerminate()(p.16). Your application should first add all Event-
Interface(p.7) to the EventInterfaceList(p.9) and all IOInterfaces to the IOInterface-
List(p. 13). It may then call Run()(p. 16) to execute the main loop. Immediately before entering
the main loop, Onlnitialize()(p. 16) is called. Then, the program waits until

e one of the IOs becomes active (the corresponding IOInterface(p. 11) is invoked)

e a timeout occurs (the corresponding EventInterface(p. 7) is called)

Any such event may force the main loop to quit by calling Quit()(p-16). The main loop then
calls OnTerminate()(p. 16) and returns the exit code (set by SetExitCode).

The documentation for this class was generated from the following file:

e MainLoop.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

18 libmip Class Documentation

3.8 MipBus Class Reference

Models a Mip bus.
#include <MipBus.h>

Inheritance diagram for MipBus::

| |OInterface |

|IOInterfaceSeriaI| | Eventinterface |

l
| MipBus |

Public Member Functions

¢ MipBus (IOInterfaceList *iolist, EventInterfaceList *evlist, const std::string &device,
int baudrate—=19200)

Constructor.

e virtual void OnDataArrival (unsigned char xdata, int len)
(abstract) This is called by OnInputAvailable()(p. 11) to process data that arrived.

e virtual void OnClose ()
(abstract) This is called when the filehandle is closed.

e virtual void OnBeforeClose ()
Called before a reset.

e virtual void OnAfterOpen ()
Called after a reset.

e virtual void OnAfterOpenError ()
Called after a reset.

e void OnEvent ()

This is called when the event timer expires.

¢ void SetLogInterface (MipLogInterface xmiplog)
Sets the mip log interface.

e MipLogInterface + GetLogInterface ()

Returns the mip log interface.

e int GetMipDeviceMax ()

Returns the mazimum number of MipBus objects.

¢ MipDevice * GetMipDevice (int i)

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.8 MipBus Class Reference 19

Returns a Mip device.

e bool AddMipDevice (MipDevice *mip)
Adds a Mip device.

¢ bool RemoveMipDevice (MipDevice xmip)

Removes a Mip device.

e bool IsIdle ()

Returns whether the bus is idle (no pending command).

¢ MipCommand * GetCurrentCommand ()

Returns the current command (or 0 if the bus is idle).

e void SendNextCommand ()

Sends the next command in the queue (if the bus is free and the queue is not empty).

¢ void CancelCommand ()

Aborts the current command.

e void CancelAllCommands ()

Aborts the current command and flushes the command queue.

e void CheckOnline ()

Checks the online status and opens or closes the serial port if necessary.

e void Report (const std::string &name, std::ostream &out, int ccindent=0) const

Writes a report of this object to the given stream. This is mainly useful for debugging.

Protected Member Functions

¢ bool GetNextCommand (int from, int to)

Asks a set of MipDevice(p. 23) objects for a new command and sets it as the current command

if found.

e void SendPacket (unsigned char xpacket, int len) const

Sends a packet.

Protected Attributes

¢ MipDevice * mMipDevice [mMipDeviceMax]|

Mip devices on the bus.

¢ MipCommand * mCurrentMipCommand

The current Mip command.

¢ int mTimeout

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

20 libmip Class Documentation

Timeout in milliseconds.

e int mNextMipDeviceIndex

The next mip device to ask for a mip comand.

e MipLoglInterface x mMipLogInterface
The log interface.

Static Protected Attributes

e const int mMipDeviceMax = 128
Mazimum number of MipDevice(p. 23) objects.

3.8.1 Detailed Description

Models a Mip bus.
A Mip bus contains several MipDevice(p. 23) objects with are identified by their device ID.

Due to protocol restrictions (to avoid collisions), only one command can be sent over the same
serial port (MIP bus) at a time. The next command can be sent only after a reply for the current
command has been received. Therefore, commands are queued in the MipDevices. If several
MipDevices are attached to the same MipBus, they are served in a round robin fashion.

The queue length is currently limited to 16 commands. Further MipCommands are silently dis-
carded.

The documentation for this class was generated from the following file:

¢ MipBus.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.9 MipCommand Class Reference

3.9 MipCommand Class Reference

MipBus(p. 18) Protocol Command.

#include <MipCommand.h>

Public Types

e enum eStatus {
sNone, sQueued, sNotSent, sSent,
sAckReceived, sReceived, sErronous, sCancelled }
Status flags.

Public Member Functions

¢ MipCommand (int cmdid, MipTxMessage *txmsg)

Constructor.

e ~MipCommand ()

Destructor.

e int GetID () const

Returns the command ID.

¢ MipRxMessage * GetRxMessage () const

Returns the message to send.

e MipTxMessage x+ GetTxMessage () const

Returns the received message.

¢ MipDevice * GetMipDevice () const
Returns the MipBus(p. 18).

e eStatus GetStatus () const

Returns the status of the command.

e unsigned char GetAck () const

Returns the status of the command.

e void SetCommandID (int id)
Sets the command ID.

e void SetRxMessage (MipRxMessage xmsg)

Sets the message to send.

e void SetTxMessage (MipTxMessage *msg)

Sets the received message.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

22

libmip Class Documentation

void SetMipDevice (MipDevice xmipdevice)
Sets the MipBus(p. 18).

void SetStatus (eStatus status)

Sets the status of the command.

void SetAck (unsigned char ack)

Sets the ack of the command.

3.9.1 Detailed Description

MipBus(p. 18) Protocol Command.

The MipCommand class is the abstraction used when sending a command to a MIP device. It
mainly consists of a MipTxMessage(p. 38) (the message transmitted to the MIP) and a MipRx-
Message(p. 36) (the reply received from the MIP). Furthermore, it contains a comman ID which
not transmitted to the MIP.

A MIP command may be in various states (eStatus). The most important states are:

sQueued: The command is in the queue, waiting for being transmitted.
sNotSent: The command has been dequeued, but sending has not completed yet.
sSent: The command has been sent but no reply has been received yet.
sAckReceived: An ack was received but the complete reply is still awaited.
sReceived: A complete and correct reply has been received.

sErronous: An erroneous reply has been received (wrong CRC).

sCancelled: The command has been cancelled.

The documentation for this class was generated from the following file:

MipCommand.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.10 MipDevice Class Reference 23

3.10 MipDevice Class Reference

Models a Mip device on a Mip bus.

#include <MipDevice.h>

Public Member Functions

¢ MipDevice (MipBus xmipbus=0, int deviceid=0)

Constructor.

e MipDevice (MipManager *mm, const std::string &device, int baudrate, int deviceid)

Constructor.

e MipBus x GetMipBus () const
Returns the MipBus(p. 18) object.

e int GetDevicelID () const

Returns the device id (slave).

¢ bool Open ()

Opens the MipDevice. The corresponding MipBus(p. 18) opens the serial interface automatically
if necessary.

¢ bool Close ()

Closes the MipDevice. The corresponding MipBus(p. 18) closes the serial interface automati-
cally if no other MipDevice is open on this MipBus(p. 18).

e bool IsOpen ()

Returns whether the MipDevice is open.

¢ void OnAckReceived (MipCommand *cmd)

Called when an ACK is received. The MIP sends an ACK after having received the message and
checked its checksum.

e void OnPacketReceived (MipCommand *cmd)

Called when the response packet has been received successfully.

¢ void OnErronousPacketReceived (MipCommand xcmd)

Called when the response packet has been received erronously (wrong packet checksum, wrong
length checksum,).

e bool AddCommand (MipCommand *cmd)

Adds a command to the queue.

e bool AddPriorityCommand (MipCommand *cmd)

Adds a command to the beginning of the queue. It will be exzecuted just after the current.

e void FlushCommandQueue ()

Deletes the command queue. This does not abort the current command.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

24

libmip Class Documentation

MipCommand * GetNextCommand ()

Switches to the next command.

int GetMipCommandMax ()

Returns the mazimum number of commands.

MipCommand * GetMipCommand (int i)
Returns a MipCommand(p. 21).

void SetMipBus (MipBus «*MipBus)
Sets the MipBus(p. 18) object.

void SetDeviceID (int deviceid)
Sets the device ID (slave).

void SetDevice (MipManager *mm, const std::string &device, int baudrate, int deviceid)

Sets the mip bus and the device id. The mip bus is determined using the MipManager(p. 31)
object.

void SetDevice (MipBus xmipbus, int deviceid)
Sets the mip bus and the device id.

bool SendCommand (int cmdid, MipMessage::eType type)

bool SendCommand SignedInteger32 (int cmdid, MipMessage::eType type, int
paraml) B

bool SendCommand _Float (int cmdid, MipMessage::eType type, float param1l)

bool SendCommand Byte (int cmdid, MipMessage::eType type, unsigned char
paraml)

bool SendCommand ByteFloatFloat (int cmdid, MipMessage::eType type, unsigned
char paraml, float pargm2, float param3)

bool SendRead AxisStatus (int cmdid=0)

bool SendReadError (int cmdid=0)

bool SendClearError (int cmdid=0)

bool SendReadWarning (int cmdid=0)

bool SendClearWarning (int cmdid=0)

bool SendReadVersion (int cmdid=0)

bool SendSetRegMode (int cmdid, unsigned char mode)

bool SendSetPosVelocity (int cmdid, float velocity)

bool SendSetWaitMode (int cmdid, unsigned char mode)

bool SendMoveAbsolute (int cmdid, int position)

bool SendMoveRelative (int cmdid, int relposition)

bool SendStopMotion (int cmdid=0, unsigned char stopmode=0)

bool SendFindHomeSys (int cmdid=0, int timeoutms=0)

bool SendReadPosition (int cmdid=0)

bool SendReadVelocity (int cmdid=0)

bool SendReadVelocityMean (int cmdid=0)

bool SendReadCurrent (int cmdid=0)

bool SendCheckCRC (int cmdid, unsigned char selection)

virtual void OnReceivedRead AxisStatus (int cmdid, eAxisStatusFlags status)=0
virtual void OnReceivedReadError (int cmdid, eError error)=0

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.10 MipDevice Class Reference 25

e virtual void OnReceivedClearError (int cmdid)=0

e virtual void OnReceivedRead Warning (int cmdid, eWarning warning)=0

e virtual void OnReceivedClearWarning (int cmdid)=0

e virtual void OnReceivedReadVersion (int cmdid, int command _interpreter _version, int
runtime library version, int hardware revision, int bootrom version, int application -
number, int application version)=0

e virtual void OnReceivedSetPosVelocity (int cmdid)=0

e virtual void OnReceivedSetWaitMode (int cmdid)=0

e virtual void OnReceivedMoveAbsolute (int cmdid)=0

e virtual void OnReceivedMoveRelative (int cmdid)=0

e virtual void OnReceivedStopMotion (int cmdid)=0

e virtual void OnReceivedFindHomeSys (int cmdid)=0

e virtual void OnReceivedReadPosition (int cmdid, int value)=0

e virtual void OnReceivedReadVelocity (int cmdid, int value)=0

e virtual void OnReceivedReadVelocityMean (int cmdid, int value)=0

e virtual void OnReceivedReadCurrent (int cmdid, int value)=0

¢ virtual void OnReceivedCheckCRC (int cmdid, bool ok, int crc)=0

e void Report (const std::string &name, std::ostream &out, int ccindent=0) const

Writes a report of this object to the given stream. This is mainly useful for debugging.

Protected Types

e enum eError {
sErrorNone = 0, sErrorCurofs0 = 1, sErrorCurofsl = 2, sErrorHall = 3,
sErrorGatedrv = 4, sErrorNobrake = 5, sErrorHwconfig = 7, sErrorEncoder = 6,

sErrorEncodersw = §, sErrorDigovld = 10, sErrorUplimit = 11, sErrorLolimit =
12,

sErrorPosreg = 20, sErrorLeft = 21, sErrorRight = 22, sErrorHome = 23,
sErrorIndex = 25, sErrorAmpdisab = 24, sErrorStop = 40, sErrorHalt = 42,
sErrorBrake = 43, sErrorCurmax = 41, sErrorOvrcur = 44, sErrorOvrtemp = 45,
sErrorComwatch = 46, sErrorWatchdog = 47, sErrorBatch = 48 }

The MIP error codes.

e enum eWarning {
sWarnNone = 0, sWarnUnknown = 100, sWarnSyntax = 110, sWarnLine = 120,
sWarnRange = 130, sWarnDef = 140, sWarnError = 150, sWarnForbid = 160,

sWarnNomove = 170, sWarnUplimit = 171, sWarnLolimit = 172, sWarn-
Unreachable = 173,

sWarnTimeout = 174, sWarnPosregoff = 180, sWarnCurregoff = 181, sWarn-
Ampdisab = 182,

sWarnStop = 183, sWarnLeft = 184, sWarnRight = 185, sWarnReset = 186,
sWarnHardwareReset = 187, sWarnFlash = 200 }
The MIP warning codes.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

26 libmip Class Documentation

e enum eAxisStatusFlags {

sAxisStatusMoving = 0x1, sAxisStatusCteVel = 0x2, sAxisStatusSinus = 0x4, s-
AxisStatusVelMode = 0x8,

sAxisStatusCmdActive = 0x10, sAxisStatusWaitEnd = 0x20, sAxisStatusLoLimit
= 0x40, sAxisStatusHiLimit — 0x80,

sAxisStatusError = 0x100, sAxisStatusWarning = 0x200, sAxisStatusCurReg =
0x400, sAxisStatusPosReg = 0x800,

sAxisStatusReferenced = 0x1000, sAxisStatusHome = 0x2000, sAxisStatusRight =
0x4000, sAxisStatusLeft = 0x8000 }

The azis status flags as defined in the MIP documentation. These flags are returned by the
ReadAzisStatus command.

e enum eTrajectoryFlags {

sTrajectoryDone = 0x1, sTrajectoryOvershoot = 0x2, sTrajectoryTrapez = 0x4,
sTrajectoryVmaxNeg = 0x8,

sTrajectoryUpLimit = 0x10, sTrajectoryLoLimit = 0x20, sTrajectoryForbidden =
0x40 }

The trajectory flags as defined in the MIP documentation.

3.10.1 Detailed Description

Models a Mip device on a Mip bus.

A MipDevice objects represents one physical MIP. A MIP is addressed with a device ID on a
serial bus. The serial bus is modelled with a MipBus(p. 18) object and the MipManager(p. 31)
handles a list of MipBus(p. 18) objects.

This class should not be used directly. It is intended to be inherited by a subclass implementing
the desired functionality. MipDevice objects can then be created as follows:

e MipManager(p.31) *mm=new MipManager();

e MyMip *md1=MyMip(mm, "/dev/ttyS0", 4800, 1)

e MyMip *md2=MyMip(mm, "/dev/ttyS0", 4800, 2) This creates two MyMip objects (which
inherit from the MipDevice class) on the same serial interface but with a different device
ID. The MipManager(p. 31) automatically creates a MipBus(p. 18) object for the serial
interface " /dev /ttyS0" and attaches the two MyMip objects with their respective device IDs.

3.10.2 Member Enumeration Documentation
3.10.2.1 enum MipDevice::eError [protected]

The MIP error codes.

Enumeration values:
sErrorNone not in error state

sErrorCurofsO0 Bad offset in current measurement MAX.
sErrorCurofs1 Bad offset in current measurement MAX.
sErrorHall Bad hall signals combination MAX.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.10 MipDevice Class Reference

sErrorGatedrv Gate driver : Undervoltage MAX.
sErrorNobrake Braking failed (motor + /- reversal 7) MAX.
sErrorHwconfig Hardware configuration error MAX.
sErrorEncoder Bad encoder signal MID.
sErrorEncodersw missing encoder signals (SW detection) MID
sErrorDigovld Digital output overload STD.
sErrorUplimit Target position out of upper bond STD.
sErrorLolimit Target position out of lower bond STD.
sErrorPosreg Position error too large STD.

sErrorLeft Left switch encountered STD.

sErrorRight Right switch encountered STD.

sErrorHome Home switch not found STD.

sErrorIndex Index not found STD.

sErrorAmpdisab Amplifier has been disabled STD.
sErrorStop Stop was activated MID.

sErrorHalt Regulation stopped by 'Halt’ command MID.
sErrorBrake Motor braked by 'Brake’ command STD.
sErrorCurmaz Motor current average to high STD.
sErrorOvrcur Overcurrent on power stage STD.
sErrorOvrtemp Overtemperature on power stage STD.
sErrorComwatch Communication watchdog STD.
sErrorWatchdog System watchdog (Firmware failure) MAX.
sErrorBatch Batch execution aborted STD.

3.10.2.2 enum MipDevice::eWarning [protected]
The MIP warning codes.

Enumeration values:
sWarnNone No warning.

sWarnUnknown Unknown command.
sWarnSyntaxr Syntax error.

sWarnLine Command line too long.
sWarnRange Value out of range.

sWarnDef Parameters not fully defined.
sWarnError Error not cleared.

sWarnForbid Command not allowed at the moment.
sWarnNomove Motion not started.
sWarnUplimit Target position out of bonds.
sWarnLolimit Target position out of bonds.
sWarnUnreachable Position cannot be reached.

sWarnTimeout Requested action took to much time.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

28 libmip Class Documentation

sWarnPosregoff Pos. Regulation is switched off.
sWarnCurregoff Cur. Regulation is switched off.
sWarnAmpdisab Power stage is disabled.
sWarnStop STOP still activated.

sWarnLeft LEFT still activated.

sWarnRight RIGHT still activated.

sWarnReset RESET is required.
sWarnHardwareReset hardware RESET is required
sWarnFlash Problem with flash.

The documentation for this class was generated from the following file:

e MipDevice.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.11 MipLoglInterface Class Reference 29

3.11 MipLoglInterface Class Reference

Receiver of log messages from the MipManager(p. 31) object and the attached MipBus(p. 18)
objects.

#include <MipLogInterface.h>

Public Member Functions

¢ MipLogInterface (MipManager xmipmanager)

Constructor.

e void SetMipManager (MipManager xmipmanager)
Sets the MipManager(p.31). This method is automatically invoked when mipmanager->Set-
LogInterface is called.

¢ MipManager * GetMipManager ()
Returns the MipManager(p. 31).

e virtual void OnDataReceived (MipBus *mipbus, unsigned char xdata, int len)=0
(abstract) Called when data is received.
e virtual void OnUnexpectedDataReceived (MipBus *mipbus, unsigned char *data, int
len)=0

(abstract) Called when unezpected data is received. That means, some data is received without
having issued a command. This may happen if another device is on the same bus or if a Mip is
ezecuting some command when it is plugged in.

e virtual void OnSendPacket (MipBus #mipbus, const unsigned char xdata, int len)=0

(abstract) Called before a packet is sent.

e virtual void OnBeforeClose (MipBus smipbus)=0
(abstract) Called before the serial port of a MipBus(p. 18) is closed.

e virtual void OnAfterOpen (MipBus xmipbus)=0
(abstract) Called right after opening the serial port of a MipBus(p. 18).

e virtual void OnAfterOpenError (MipBus xmipbus)=0

(abstract) Called if an error occured when opening a serial port.

Protected Member Functions

e std::string DataToString (unsigned char spacket, int len)

Turns a piece of data (e.g. a packet) into hexadecimal Tepresentation.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

30 libmip Class Documentation

Protected Attributes

e MipManager * mMipManager
The associated MipManager (p. 31) object.

3.11.1 Detailed Description

Receiver of log messages from the MipManager(p. 31) object and the attached MipBus(p. 18)
objects.

This is an abstract interface intended for logging. It allows to catch various internal events of the
MipManager(p. 31) and the MipBus(p. 18) objects.

To use this interface, create a subclass of it and implement its abstract methods. Attach your
class to the MipManager(p. 31) using:

e mymipmanager->SetLoglnterface(mymiplogclass); It is recommended to do this immediately
after creating the MipManager(p. 31) object.

The documentation for this class was generated from the following file:

e MipLogInterface.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.12 MipManager Class Reference 31

3.12 MipManager Class Reference

Manages a Set of MipBus(p. 18) objects with attached MipDevices.

#include <MipManager.h>

Public Member Functions

e MipManager (IOInterfaceList xiolist=0, EventInterfaceList xevlist=0)

Constructor.

e ~MipManager ()

Destructor.

e void SetLogInterface (MipLoglInterface xmiplog)
Sets the mip log interface.

e MipLogInterface + GetLogInterface ()

Returns the mip log interface.

e IOInterfaceList + GetIOInterfaceList ()
Returns the I0 interface list.

e EventInterfaceList + GetEventInterfaceList ()

Returns the event interface list.

e MipBus * FindMipBus (const std:string &device)
Returns a MipBus(p. 18) object.

¢ int GetMipBusMax ()

Returns the mazimum number of MipBus(p. 18) objects.

e MipBus * GetMipBus (int i)
Returns a MipBus(p. 18) object.

e void Report (const std::string &name, std::ostream &out, int ccindent=0) const

Writes a report of this object to the given stream. This is mainly useful for debugging.

3.12.1 Detailed Description

Manages a Set of MipBus(p. 18) objects with attached MipDevices.

This is the first object to create when working with this library. All MipDevice(p. 23) objects
are attached to it.

The MipManager requires an IOInterfaceList(p. 13) and an EventInterfaceList(p.9). If these
arguments are not provided, the MipManager creates these lists for you and you can access
them using GetIOInterfaceList and GetEventInterfaceList. Note that if you don’t use the Main-
Loop(p. 16) implementation of this library as your program’s main loop, you need to listen to all

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

32 libmip Class Documentation

filehandles of the IOInterfaceList(p.13) and call the OnInputAvailable() method on the corre-
sponding I0Interface(p. 11) object when filehandles become active.

The MipManager transparently maintains a list of MipBus(p. 18) objects. If you add a Mip-
Device(p. 23) on a serial port, a MipBus(p. 18) object for that serial port is created (unless such
an object exists already) and the MipDevice(p. 23) object is attached to this MipBus(p. 18).
Hence, the structure looks like this:

e MipManager

— MipBus(p. 18) /dev/ttyS0
*x MipDevice(p.23) ID=1
*x MipDevice(p.23) ID=2

— MipBus(p. 18) /dev/ttyS1
* MipDevice(p. 23) ID=1

— MipBus(p. 18) ...

You can use the Report()(p-31) method to dump the data structure of the MipManager.

The documentation for this class was generated from the following file:

e MipManager.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.13 MipMessage Class Reference 33

3.13 MipMessage Class Reference

MipBus(p.- 18) Protocol Message.
#include <MipMessage.h>

Inheritance diagram for MipMessage::

MipMessage

| MiprMes&age| | MipTxM&mge|

Public Types

e enum eType {
sNone = 0x00, sReset = 0x08, sHalt = 0x09, sBrake = 0x0A,

sReadAxisStatus = 0x0B, sReadError = 0x0C, sClearError = 0x0D, sRead Warning
= 0x0E,

sClearWarning = 0x0F, sReadTempParam = 0x10, sReadPermanentParam = 0x11,
sSetTempParam = 0x12,

sResetTempParam = 0x14, sUpdatePermParam = 0x15, sReadAllTempParam =
0x16, sRead AllPermParam = 0x17,

sSet AllTempParam = 0x18, sSetAllPermParam = 0x19, sReadCurrentGains =
0x1A, sSetCurrentGains = 0x1B,

sReadPositionGains = 0x1C, sSetPositionGains = 0x1D, sReadVersion = 0x1F, s-
SetRegMode = 0x20,

sSetProfile = 0x21, sSetPosVelocity = 0x22, sSet WaitMode = 0x23, sMoveAbsolute
= 0x24,

sMoveRelative = 0x25, sWaitForTargetPos = 0x26, sSetVelocity = 0x27, sStop-
Motion = 0x28,

sFindHomeSys = 0x29, sFindHome = 0x2A, sFindIndex = 0x2B, sDefinePosition =
0x2C,

sWaitForPosition = 0x2D, sReadIndexDistance = 0x2E, sReadProfile = 0x2F, s-
ReadPosition = 0x30,

sReadPositionMust = 0x31, sReadPositionIsMust = 0x32, sReadVelocity = 0x33,
sReadVelocityMean = 0x34,

sReadVelocityMust = 0x35, sReadVelocityIsMust = 0x36, sReadCurrent = 0x37,
sReadCurrentMean = 0x38,

sReadCurrentMust = 0x39, sReadCurrentIsMust = 0x3A, sReadPosVelCur =
0x3B, sReadPosVelCurMean = 0x3C,

sReadPosVelCurMust = 0x3D, sReadPosVelCurlsMust = 0x3E, sRead AxisInfo —
0x3F, sReadInput = 0x40,

sReadInputByte = 0x41, sWaitForInput = 0x42, sSetOQutput = 0x43, sSetOQutput-

Byte = 0x44,
sRead AnalogInput = 0x45, sSetUserPWM = 0x46, sReadSysTime = 0x47, sWait-
Time = 0x48,

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

34

libmip Class Documentation

sSetCurrent = 0x49, sReadECStatus = 0x4A, sReadMaxStack = 0x4F, sPutString
= 0x4B,

sGetString = 0x4C, sPutNumber = 0x4D, sGetNumber = 0x4E, sInitMoveAbsolute
= 0x50,

sInitMoveRelative = 0x51, sInitSetVelocity = 0x52, sStartMovement = 0x53, sInit-
AutoTune = 0x60,

sAutotune = 0x61, sSquareCurrentTest = 0x62, sSetupRecorder = 0x68, sRecord-
Data = 0x69,

sReadNbOfSamples = 0x6A, sReadRecordedData = 0x6B, sReadAllTemp-
UsrlParam = 0x70, sRead AllPermUsrl1Param = 0x71,

sSet AllTempUsrl1Param = 0x72, sSet AllPermUsr1Param = 0x73, sRead AllTemp-
Usr2Param = 0x74, sRead AllPermUsr2Param = 0x75,

sSet AllTempUsr2Param = 0x76, sSet AllPermUsr2Param = 0x77, sCheckCRC =
0x78 }

Defines the enum eType. The MIP message types.

Public Member Functions

e MipMessage (int src=0, int dest=0, eType type=sNone)

Constructor.

int GetDestination () const

Returns the destination.

int GetSource () const

Returns the source.

eType GetType () const
Returns the type.

virtual int GetLength () const =0
Returns the length.

void SetDestination (int dest)

Sets the destination.

void SetBroadcast ()

Sets the broadcast destination.

void SetSource (int src)

Sets the source.

void SetType (eType type)
Sets the message type.

unsigned int CaleCRC ()
Calculates the checksum of the packet.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.13 MipMessage Class Reference

35

Protected Attributes

¢ int mDestination

The device ID of the destination (the device that receives the message).

¢ int mSource
The device ID of the source (the device that sends the message).

e eType mType
The message type.

e unsigned char mData [1024]
The data.

3.13.1 Detailed Description

MipBus(p. 18) Protocol Message.

This (abstract) class models a MIP bus message. MIP bus messages are implemented in the classes
MipRxMessage(p. 36) (received messages) and MipTxMessage(p. 38) (messages to transmit).

For information about the MIP bus message format, please refer to the MIP manual.

The documentation for this class was generated from the following file:

e MipMessage.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

36 libmip Class Documentation

3.14 MipRxMessage Class Reference

MipBus(p. 18) Protocol Receive Message.
#include <MipRxMessage.h>

Inheritance diagram for MipRxMessage::

MipMessage

MipRxMessage

Public Member Functions

e MipRxMessage ()

Constructor.

e int GetLength () const
Returns the length.

e bool IsErronous () const

Returns whether the packet is erronous or not. (Erronous means that either the length checksum
or the packet checksum are wrong.) An erronous packet is always marked as complete.

e bool IsComplete () const

Returns whether the packet is complete or not. (Not complete means that not all of it has been
received yet.).

e void AddReceivedData (unsigned char *data, int len)
Adds received data.

e unsigned char ReadCommand ()

Reads a command (byte) from the data.

e unsigned char ReadByte ()
Reads a byte from the data.

¢ unsigned short int ReadUnsignedInteger16 ()
Reads an unsigned 16bit integer from the data.

e short int ReadSignedInteger16 ()
Reads a signed 16bit integer from the data.

e unsigned int ReadUnsignedInteger32 ()
Reads an unsigned 32bit integer from the data.

e int ReadSignedInteger32 ()
Reads a sitgned 32bit integer from the data.

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.14 MipRxMessage Class Reference 37

¢ float ReadFloat ()
Reads a float from the data.

bool ReadBool ()
Reads a bool from the data.

bool ReadHeader ()

Reads the header and checks the header checksum in the length field. Returns true if the checksum
s correct.

bool ReadLength ()

Reads the length and checks the header checksum in the length field. Returns true if the checksum
1§ correct.

e bool CheckCRC ()
Checks the packet checksum.

3.14.1 Detailed Description

MipBus(p. 18) Protocol Receive Message.

This class handles a received message. It contains methods to check the CRC and the header
checksum, as well as methods to read the information of the message, i.e. methods that transform
the received bits into integers, floats and other data types.

The documentation for this class was generated from the following file:

o MipRxMessage.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

38 libmip Class Documentation

3.15 MipTxMessage Class Reference

MipBus(p. 18) Protocol Transmit Message.
#include <MipTxMessage.h>

Inheritance diagram for MipTxMessage::

MipMessage

MipTxMessage

Public Member Functions

e MipTxMessage (int src=0, int dest=0, eType type=sNone)

Constructor.

e int GetLength () const
Returns the length.

e unsigned char x GetPacket ()
Returns the complete packet.

¢ void WriteCommand (unsigned char value)

Writes a command (byte) to the data.

e void WriteByte (unsigned char value)
Writes a byte to the data.

e void WriteUnsignedInteger16 (unsigned short int value)
Writes an unsigned 16bit integer to the data.

e void WriteSignedInteger16 (short int value)
Writes a signed 16bit integer to the data.

¢ void WriteUnsignedInteger32 (unsigned int value)
Writes an unsigned 32bit integer to the data.

e void WriteSignedInteger32 (int value)
Writes a signed 32bit integer to the data.

e void WriteFloat (float value)
Writes a float to the data.

e void WriteBool (bool value)
Writes a bool to the data.

e void WriteHeader ()

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.15 MipTxMessage Class Reference 39

Writes the message header.

e void WriteLength ()
Writes the length (including the header checksum) to the message.

e void WriteCRC ()
Calculates the CRC and adds it to the message.

3.15.1 Detailed Description

MipBus(p. 18) Protocol Transmit Message.

This class prepares a message for transmission to a MIP. It writes the header with the correct
length and header checksum and calculates the CRC of the message. Furthermore, it contains
methods to pack the arguments (integers, floats, ...) into the message.

The documentation for this class was generated from the following file:

e MipTxMessage.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

40 libmip Class Documentation

3.16 T SysParam Struct Reference

SysParam struct.

#include <MipDefinitions.h>

Public Attributes

e char AxisNumber
No. of the azis = MIP-Bus Address.

e char GroupAddress

Group address for multicast messages.

e int StartupMode

No. of active mode after startup.

¢ long RS232BaudRate
Baudrate RS232.

e int RS232Mode
0 = N81

¢ long RS485BaudRate
Baudrate RS485.

e TSysCfg SysConfig

System configuration. 16 bits: see definition below.

o TsysCfg2 SysCongig2

System configuration 2. 16 bits: see definition below.

¢ int SupplyVolt
Supply Voltage (needed for MIP-EC current regulation,).

e int NbOfChanges

no. of parameter changes

¢ int EncoderResolution

encoder resolution [impulse/round]

e int MaxVelocity
in [rpm]
¢ word MinAccelTime

time [ms] to accelerate 0 to MaxVelocity

e int PeakCurrent

maz. peak current in [mA]

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.16 T SysParam Struct Reference

41

e int ContCurrent

maz. continuous current in [mA]

e float GearRatio

total transmission ratio

o float Inertia

total inertia (rotor + load) in [gxecm2]

e float TorqueConst
in [Nm/A]

e float SpeedConst
in [rpm/V] (needed for MIP-EC current regulation)

e int CurDelta

third parameter for EC-current regulation

e long PosErrorMax

maz. position error in [qc]

e long UpPositionLimit
upper position limit [gc]

¢ int EnableUpLimit
1 = enable, 0 = disable

¢ long LoPositionLimit

lower position limit [qc]

¢ int EnableLoLimit
1 = enable, 0 = disable

e int PosGainP

P gain for position regulation.

o int PosGainl

I gain for position regulation.

o int PosGainD

D gain for position regulation.

e int CurGainP

P gain for current regulation.

e int CurGainl

I gain for current regulation.

e int HomeType

see possible types below

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

42 libmip Class Documentation

e float HomeVelocity
velocity of home seek [qc/ms]

e int CurrentThreshold
current index threshold [mA]

e long HomeOffSet
relative offSet to home [gc]

¢ int PLMaxVelocity

upper limit for pulse length velocity measurement

o int AuxEncoderMode

0 = without ext. encoder, 1 = with ’a-dir’ encoder, 2 = with ’a-b’ encoder

e float AuxEncoderGain

Augiliary encoder gain.

e int BrakeGain

low level braking gain

¢ int HomePositionHi

position value Set after Homing (Hi- Word)

e int HomePositionLo
same (Lo-Word)

¢ long OneRevolution

one full rotor revolution [gc]

¢ long OneLoadRevolution

one full load revolution [qc].

¢ word ExtendTag
if == EXTEND_TAG, following parameters ezist

¢ long ExtParam [35]
place for 35 extended parameters (43..77)

¢ long SysParamCRC
CRC of system parameters.

3.16.1 Detailed Description

SysParam struct.

This file contains the definitions of various structs used by the MIP devices. For detailed infor-
mation, please refer to the MIP manual.

The documentation for this struct was generated from the following file:

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

3.16 T SysParam Struct Reference

43

e MipDefinitions.h

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

Index

eError sWarnDef, 27
MipDevice, 26 sWarnError, 27
EventClock, 5 sWarnFlash, 28
EventInterface, 7 sWarnForbid, 27
EventInterfaceList, 9 sWarnHardwareReset, 28
eWarning sWarnLeft, 28
MipDevice, 27 sWarnLine, 27
sWarnLolimit, 27
IOInterface, 11 sWarnNomove, 27
IOInterfaceList, 13 sWarnNone, 27
IOInterfaceSerial, 14 sWarnPosregoff, 27
sWarnRange, 27
MainLoop, 16 sWarnReset, 28
MipBus, 18 sWarnRight, 28
MipCommand, 21 sWarnStop, 28
MipDevice, 23 sWarnSyntax, 27
sErrorAmpdisab, 27 sWarnTimeout, 27
sErrorBatch, 27 sWarnUnknown, 27
sErrorBrake, 27 sWarnUnreachable, 27
sErrorComwatch, 27 sWarnUplimit, 27
sErrorCurmax, 27 MipDevice
sErrorCurofs0, 26 eError, 26
sErrorCurofsl, 26 eWarning, 27
sErrorDigovld, 27 MipLogInterface, 29
sErrorEncoder, 27 MipManager, 31
sErrorEncodersw, 27 MipMessage, 33
sErrorGatedrv, 26 MipRxMessage, 36
sErrorHall, 26 MipTxMessage, 38
sErrorHalt, 27
sErrorHome, 27 sErrorAmpdisab
sErrorHwconfig, 27 MipDevice, 27
sErrorIndex, 27 sErrorBatch
sErrorLeft, 27 MipDevice, 27
sErrorLolimit, 27 sErrorBrake

sErrorNobrake, 27

MipDevice, 27

sErrorNone, 26 sErrorComwatch
sErrorOvrcur, 27 MipDevice, 27
sErrorOvrtemp, 27 sErrorCurmax
sErrorPosreg, 27 MipDevice, 27
sErrorRight, 27 sErrorCurofs0
sErrorStop, 27 MipDevice, 26
sErrorUplimit, 27 sErrorCurofsl
sErrorWatchdog, 27 MipDevice, 26
sWarnAmpdisab, 28 sErrorDigovld

sWarnCurregoff, 28

MipDevice, 27

INDEX

45

sErrorEncoder
MipDevice, 27
sErrorEncodersw
MipDevice, 27
sErrorGatedrv
MipDevice, 26
sErrorHall
MipDevice, 26
sErrorHalt
MipDevice, 27
sErrorHome
MipDevice, 27
sErrorHwconfig
MipDevice, 27
sErrorIndex
MipDevice, 27
sErrorLeft
MipDevice, 27
sErrorLolimit
MipDevice, 27
sErrorNobrake
MipDevice, 27
sErrorNone
MipDevice, 26
sErrorOvrcur
MipDevice, 27
sErrorOvrtemp
MipDevice, 27
sErrorPosreg
MipDevice, 27
sErrorRight
MipDevice, 27
sErrorStop
MipDevice, 27
sErrorUplimit
MipDevice, 27
sErrorWatchdog
MipDevice, 27
sWarnAmpdisab
MipDevice, 28
sWarnCurregoff
MipDevice, 28
sWarnDef
MipDevice, 27
sWarnError
MipDevice, 27
sWarnFlash
MipDevice, 28
sWarnForbid
MipDevice, 27

sWarnHardwareReset

MipDevice, 28
sWarnLeft
MipDevice, 28

sWarnLine
MipDevice, 27
sWarnLolimit
MipDevice, 27
sWarnNomove
MipDevice, 27
sWarnNone
MipDevice, 27
sWarnPosregoff
MipDevice, 27
sWarnRange
MipDevice, 27
sWarnReset
MipDevice, 28
sWarnRight
MipDevice, 28
sWarnStop
MipDevice, 28
sWarnSyntax
MipDevice, 27
sWarnTimeout
MipDevice, 27
sWarnUnknown
MipDevice, 27
sWarnUnreachable
MipDevice, 27
sWarnUplimit
MipDevice, 27

T _SysParam, 40

Generated on Wed Jun 1 09:19:08 2005 for libmip by Doxygen

